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CHAIN POOLING TO MINIMIZE PREDICTION ERRORS IN SUBSET REGRESSION

by Arthur G. Holms

Lewis Research Center

SUMMARY

A technique called chain pooling had been developed for the analysis
of results of two-level fixed effects full or fractional factorial exper-
iments not having replication. The basic strategy includes the use of one
nominal level of significance for some preliminary tests and a second nom-
inal level of significance for the final tests. Strategies were identi-
fied having approximate optimality with respect to the probabilities of
Type 1 or Type 2 errors.

The subject has been reexamined from the point of view of minimizing
prediction errors in the resulting subset regression equations. The in-
vestigation consisted of Monte Carlo studies using population models hav-
ing geometries chosen to represent response surface applications, as moti-

vated by some research and development in structural materials optimiza-
o tion. Parameter values were chosen to be unfavorable to the decision
00 procedures. Simulated experiments were generated by adding pseudo norm-

ally distributed random errors to population values to generate "observa-
tions." Model equations were fitted to the "observations" and the deci-
sion procedures were used to delete terms. Comparison of values pre-
dicted by-the reduced models with population values enabled the identi-
fication of a deletion strategy that is approximately optimal for minimiz-
ing prediction errors.

The results are proposed for any situation giving orthogonal esti-
mators of the model coefficients. They include the cases of orthogonal
designs of experiments and orthogonalizing transformations of terms of
the initial regression model.

INTRODUCTION

In the development of materials for aerospace applications, the ex-
perimentation is often expensive and time consuming. In seeking optimum
processing conditions or optimum compositions, the experimentation is
usually done with costly raw materials and elaborate processes. The tests
involved can include creep, stress rupture, fatigue, or other environ-
mental simulations and can be time consuming. Furthermore, the complexity
of the total fabrication and testing process permits the random cumulative
effect of important levels of experimental error. The efficient procedure
for mitigating the effects of such error, while minimizing the costs of
experimentation, has been to practice mathematical modeling of the data.
Modern methods for attempting to fit the most appropriate predictive equa-
tion to such data are referred to as methods of subset regression. Prac-
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tical uses of such techniques in materials development have been described

in Collins, Quigg, and Dreshfield (1968), Eckert and Serafini (1968),

Sandrock and Holms (1969), Eiselstein (1971), and Filippi (1974). Such

techniques have been made feasible by the advent of large scale computers.

Many differing statistical decision procedures have been incorpor-

ated into the computer programs that are used to pursue the objectives of

subset regression. Some of them have been described by Draper and Smith

(1966) and criteria for their optimality have been discussed by Hocking

(1972).

Two reasons for the plethora of methods are:

1. There is no unique and widely accepted criterion for judging

which of two proposed statistical procedures is the better.

2. If a unique criterion is adopted for use in measuring the good-

ness of a subset regression procedure, the analytical problem becomes

mathematically intractable if the object is to devise a procedure of wide

applicability that will satisfy the criterion. This results in many spe-

cial solutions of special cases.

In the present investigation, the inhibitions of mathematical trac-

tability were thrown off by using Monte Carlo simulations. The method of

subset regression that was investigated was essentially the method of
chain pooling described by Holms and Berrettoni (1969). Whereas the

method had been investigated to minimize probabilities of Type 1 or

Type 2 errors, the present investigation looks for strategies that mini-

mize the maximum prediction errors. The results are offered as being

generally useful because of the general applicability of the underlying

assumptions. The assumptions are as follows:

1. The model to be fitted is linear in the unknown parameters.

2. The errors of the observations are independently normally distrib-

uted random variables with a zero mean and a constant variance.

3. Orthogonal estimators are available for estimating the unknown
parameters of the linear model. (This orthogonality can be the result of
the design of the experiment that furnished the observations, or it can
be the result of an orthogonalizing transformation of the terms of the
equation.)

4. The appropriate criterion of the goodness of a subset regression
procedure is the smallness of the largest of the prediction error mean
squares over the points of the experiment for which the experimentor de-
sires to make predictions.

5. There is no replication available for an estimate of the "pure"
error variance.
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The first four of the five preceding assumptions are fundamental to the

rationale of the method; however, data will be cited for believing that

the method is robust against the normality part of the second assumption.

The fifth assumption merely acknowledges the possibility that an alto-

gether different method might be preferred in the presence of pure repli-

cation.

The original investigation of chain pooling had been concerned with

three sizes of experiments, namely, experiments furnishing 16, 32, or 64

observations (Holms and Berrettoni (1967)). The simulations had shown

drastically reduced decision error probabilities, or the equivalent,

greatly improved information efficiencies, for the larger experiments.

Such results suggest that the method of analysis is relatively less crit-

ical for the larger experiments, and the methods described (Holms and

Berrettoni (1967)) are therefore believed to be adequate for producing

small prediction errors with experiments providing 32 or more observa-
tions.

For relatively saturated experiments that are smaller than sixteen

observations, the opinion is offered that such experiments are too small

to provide both (1) good estimates of model coefficients and (2) a good

test statistic, in cases where random errors are large enough to call for

a statistical decision procedure. In other words, experiments with less

than sixteen observations should be fitted with models of a fixed size

with no use of conditional modeling.

Consistent with the preceding remarks, the simulations of the pres-

ent investigation were all performed with experiments containing sixteen

observations in the belief that such experiments are large enough to

justify the use of a statistical decision procedure, but small enough

so that the precise optimization of the decision procedure would be quite

beneficial.

Where mp is the number of estimable terms deleted before the deci-

sion procedure begins (or equivalently, the residual degrees of freedom),
where up is the nominal size of the preliminary tests, and where af
is the nominal size of the final tests, the parameters of the chain pool-

ing strategy are the quantities mp, up, and af. Results of the inves-
tigation are presented as recommended values of mp, up, and af.

The results thus provide an improved method for the mathematical

modeling of the small, expensive, hard to control experiments that are

typical of empirical research and development in materials optimization.
The improvement lies in the fact that the statistical decision procedure

is optimized to minimize prediction errors, thus maximizing the accuracy
with which optimum materials compositions and processes can be identified.



EXISTING THEORY OF SUBSET REGRESSION

Optimality Criteria

The underlying population model for the system being investigated

is assumed to be of unknown form and to contain an unknwon number of

population parameters. What is known is that there is a set of variables

Ul, . . ., Ug whose values can be measured or controlled within a negli-

gible amount of error. Another variable, called the dependent variable

is assumed to be observable and to contain a random component called

error where the error is independently normally distributed with mean

zero and constant variance. In an abstract form, the model equation for

the dependent variable is written

Y =(u, .. ., u ) + e (1)

where Y is the dependent variable, ul, . ., ug are the independent

variables, p is the unknown function, and e is the error.

The next step of the procedure is to approximate the unknown func-

tion by a polynomial in the independent variables, which will be linear

in a set of parameters to be estimated. The parameters will be estimated

by fitting some version of the polynomial to a collection of data con-

sisting of t matched sets of observations of y and ul, . . ., ug.
Whether or not the data was collected from any controlled activity, the

data set will be called an experiment, and the sets of values of

Ul, . . . , Ug will be called treatments.

In the absence of pathological cases, the availability of the t

matched sets of observations allows the fitting of a polynomial contain-

ing t unknown parameters. Thus, conceptually, an approximation to (1)

is written

Y = Yf(Ul , . ., u ) + . . + tft(ul . .. , ) + e (2)

The assumption is now introduced that through prior knowledge, or

through knowledge of the structure of the experiment, the functions fi

(ul, . . ., Ug) are all established. With these fi (ul , . . ., Ug)
being known functions, let

xi = fi(u . ., u ) (3)

and let

Xl El

Equation (2) is now written

Y = Y1
+ Y2 x2 + + Ytxt + e (4)
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In the preceding equations, the coordinates ul, . ., Ug are

properly called independent variables, but because the xi  are functions

of the ul, . . . ug, the xi  are not mathematically independent of

each other. Their special role is often identified by calling them re-

gressor variables, or simply, regressors.

Suppose equation (4) is modified by retaining only r terms beyond

the constant term (not necessarily the first r terms). With 1 < r < t

and with appropriate changes of subscripts, equation (4) is now written

Y = 0 + B x + .. + 8xr + e (5)

The usual procedure is to find estimates of the Bi by the method of

least squares. Assume that this has been done and that the estimates are

bi . The resulting predictive equation is

Y = b 0 + b x 1 + . + brxr (6)

For any point ul, . ., ug the associated xi  can be determined and

the prediction error ep is

ep = Y - 9(,  ., Ug) (7)

The mean squared prediction error can be expressed as the sum of a vari-

ance and a squared bias. Where B('), E('), and V(') are the bias, ex-

pectation, and variance of ('), respectively, the mean squared error of

prediction is:

E(e2) = E[Y - E(Y) + E(Y) - ]2

= E[Y - E(Y)] 2 + 2E{[Y - E(Y)][E(Y) - i]} + [E(Y) - y]

= V(Y) + B2 (Y) (8)

As is well recognized, increasing r can usually be done to reduce

B2 (Y). As was pointed out explicitly by Walls and Weeks (1969) such in-

creases in r are usually accompanied by increases in V(Y). Selecting

r and the r terms to be retained is the central problem in subset re-

gression; however, not all authors have chosen the minimization of E(e2)

as the objective of their procedures.

Three popular methods of subset regression are known as (a) forward

selection, (b) sequential deletion, and (c) stepwise regression. Some

discussion of the three methods was given by Draper and Smith (1966).

Many discussions of the relative merits of differing methods of subset

regression have dealt with finding the best subset of terms for a fixed

number of terms (Beale (1970)1. This seems to be an incomplete formula-
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tion of the problem. The question should be: "What is the best subset

of terms?" with no prior specification of the number of terms in the

subset.

Many of the subset regression procedures in common use do not en-

vision the retention of a fixed number of terms, but instead allow the

number retained to be determined by a statistical decision procedure.

This point of view is incorporated into the procedures described by

Efroymson in the publication by Ralston and Wilf (1960), by Sidik (1972a),

by Holms and Berretoni (1969), and by the works of many other authors as

summarized by Draper and Smith (1966). These procedures all use tests of

significance, presumably in an attempt to control some combination of the

probabilities of the Type 1 and Type 2 errors.

If the model selection uses tests of significance applied to the co-

efficients of a fitted equation, the question arises as to what form of a
loss function is appropriate to the statistical decision procedure. The

methods of classical statistics often give procedures whereby an arbitrary
limit may be established to control the probability of Type 1 or Type 2
errors. On the other hand, real life problems seldom provide the informa-
tion for a rational quantitative specification of such particular proba-

bility levels of decision errors. In many cases a reasonable objective
is that of minimizing some function of the mean square error of predic-
tion [as defined by eq. (8)]. In such cases a statistical decision pro-

cedure might operate in the guise of significance tests, but its ultimate

objective would be the minimizing of prediction errors, rather than the

control or probabilities of Type 1 errors.

Small Experiments

The problem under consideration is that of fitting a model equation
to an experiment that resulted in a small number of observations. Con-
sistent with the smallness of the experiment, the assumption is also made
that it contains no pure replication, so that t tests or other well
established procedures are not obviously valid or applicable.

Allen (1971) referred to literature that used the residual sum of
squares as a criterion for choosing regressors. He pointed out that
there are at least two objections to using such a criterion:

1. If the residual sum of squares were the only criterion, then all
of the regressors would be used and there would be no motivation for sub-
set regression.

2. The residual sum of squares is not directly related to the "nat-
ural" loss function which is the mean square error of prediction.

On the other hand, the methods of Allen obtain a criterion called
PRESS by predicting each observation from all the other observations.
The present investigation is concerned with small saturated experiments
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where each observation is more or less crucial to the estimation proce-

dure, particularly for predictions at the set of regressor 
values corre-

sponding to a given observation. The PRESS criterion is therefore be-

lieved to be inappropriate to subset regression for small saturated 
ex-

periments.

Nonlinear Models

In the fitting of equations to data, a large body of knowledge 
has

been developed for the fitting of linear models. The fitting of nonlinear

models is a subject of current research outside the scope of the present

investigation. (The initial use of a nonlinear model is presumably dic-

tated by prior knowledge and such prior knowledge might dictate 
the use

of a different model selection procedure.) The restriction to linear

models is no great handicap in fitting to data over 
sufficiently small

domains because nonlinearity of the response function can be approximated

by fitting a linear combination of power functions of 
the independent

variables.

Colinearities

The coefficients of equation (4) are usually estimated by the method

of least squares which gives unbiased coefficient estimates. For any of

several reasons, the data analyst may wish to set some of the coefficients

equal to zero, or he may wish to adjust their values as a result of cer-

tain deficiencies in the experiment.

The existence of correlations or colinearities among the regressors

constitutes a potential danger in the estimation of the parameters 
of

equation (4). Such a situation in combination with errors in the y-values

can result in estimates of the Yi having excessively large absolute

values. A direct treatment of this symptom is to use methods that produce

biased estimates, as in the methods of Ridge Analysis discussed by 
Hoerl

and Kennard (1970), and also by Marquardt (1970). The methods of biased

estimation have the obvious disadvantage that they provide no specific

procedure for the discarding or selection of terms in equation (4). They

have other disadvantages as illustrated by the simulations that were per-

formed by Newhouse and Oman (1971). Furthermore, when backward elimina-

tion is used in subset regression, the experience is usually that 
each

successive elimination results in smaller absolute values for the coeffi-

cients that remain. This suggests that the objectives of these biased

estimation procedures might also be attained by the use of a good subset

regression procedure.

Special Techniques

Suppose that an experiment has been performed giving observations



of the dependent and associated independent variables, under the circum-
stance that the error in y is independently normally distributed with
mean zero and constant variance a2 and that there are multicolineari-
ties among the independent variables. One approach to such a problem is
exemplified by the book by Daniel and Wood (1971) and consists of a mix-
ture of much plotting and tentative model fitting with occasional uses of
Mallow's (1973) Cp-statistic all blended with generous infusions of the
experimentor's prior knowledge in an ad hoc manner for the particular set
of data.

CHAIN POOLING COUPLED WITH PRINCIPAL COMPONENTS REGRESSION

The true form of the population model and the value of the error var-
iance are assumed to be unknown. The best procedure is deemed to consist
of estimating the parameters of a linear model containing as many param-
eters as there are observations. An appropriate procedure is to be used
to set some of the parameter estimates to zero.

Two procedures available for setting parameter estimates to zero
are Half-Normal Plotting (Daniel, 1959) and Chain Pooling (Holms and
Berrettoni, 1969). Similarities and differences between Half-Normal
Plotting and Chain Pooling will be discussed. Both of these methods re-
quire single degree of freedom orthogonal estimates of model parameters.
Such estimates are ordinarily provided by the results of two-level full
and fractional factorial experiments without replication. The possi-
bility of extending such methods to cases of correlated estimates through
orthogonalizing transformations ("principal components regression") will
be discussed.

Comparison of Half-Normal Plotting with Chain Pooling

In Half-Normal Plotting, the absolute magnitudes of the coefficient
estimates are plotted in an ordered manner on probability paper. All
data interpretations are therefore dependent on the observed ordering,
rather than on a prior ordering. Chain Pooling is similarly based on the
observed ordering. It uses a sequence of dependent tests of hypotheses
where each test is referred to the distribution function of the largest
of a set of chi-square variates.

Conditional model building is just one of the objectives of Half-
Normal Plotting. Other objectives include the detection of nonuniform
error variance and other departures from the usual assumptions. By com-
parison, the objective of Chain Pooling is only that of conditional model
selection, but it attempts to achieve its objective in a manner that has
been established as being approximately optimal by combining a few
rational considerations with a huge amount of Monte Carlo simulations.



9

Procedure Based on Prior Ordering

Chain pooling uses a succession of tests of significance. 
Another

procedure using a succession of tests of significance was 
proposed by

Kennedy and Bancroft (1971). In contrast to the methods of Half-Normal

Plotting and Chain Pooling, they use a prior specified order for 
the

tests of significance.

Deletion Under the F-Test

Subset regression procedures often proceed as follows: A multi-

dimensional polynomial is fitted to the available data. If there are g

independent variables and t observations, a polynomial, truncated at t

terms is written having the form:

g g g g g g

Y O .ixi. + ijxix + kxixxk

i= i=l j=l i=l1 j=1 k=l

+ e + . + similar terms up to degree d (9)

Thus far, the assumption is that a polynomial with t terms is to

be fitted to t observations. AssUme instead that r terms beyond B0
are fitted, with r + 1 < t leaving

m p t - (r + 1) mp0 > 0 (10)

degrees of freedom for the residual sum of squares. In this case mp0

will be called the initial degrees of freedom for error.

Let SmpO be the initial residual sum of squares with mp0 degrees

of freedom. Assuming that the residual sum of squares is due only to

error (that is, assuming zero lack of fit), the quantity Smp0/o 2 is a

central chi-square variable with mp0 degrees of freedom. Assume that

among the r terms in the initial model, one or more have zero popula-

tion coefficients, and assume that one of these terms, namely the ith

one, is selected at random, is deleted from the model, and is pooled with

the residual. Then the degrees of freedom for the residual is increased

by one. 'Let the new residual sum of squares be Smp,i. Under the pre-

ceding assumptions the ratio

F (Smp'i - S mp)/1
F = mp,i mp,O (11)

Smp,O/m p

has the F-distribution with 1 and mp0  degrees of freedom.

If only one test were to be performed, equatio' (11) could provide
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an a-level test of the null hypothesis Bi = 0 against the alternative

hypothesis Bi # 0. The critical red;ion would be the region for which

the test statistic exceeds the (1 - d) point of the cumulative distribu-

tion function of F with 1 and mp0 degrees of freedom. If subsequent

tests are to be performed, the question arises as to whether their sensi-

tivity can be improved by increasing the degrees freedom of the denomi-

nator through the pooling of mean squares into the denominator correspond-

ing to coefficients that had previously tested as nonsignificant. Such a

practice would invalidate the a-level of the F-test.

The Largest of a Set of Chi-Square Variates

Assume now that j - 1 terms have been deleted from the model that

originally contained t terms, and that Rj_l is the residual sum of

squares corresponding to the j - 1 terms, and that all of these terms

actually represented population parameters with zero values. Let

Zij be the decrease in the regression sum of squares resulting from de-

leting the ith term from the regression equation, and let Zij be added

to Rj_ -1 to form the new residual sum of squares. Assume that all of

the deleted parameter estimates were independently chosen and orthogonal.

If the parameter coefficient of the ith term were zero, the sum Zij + R_

would then be the sum of j independent single degree of freedom central

chi-square variates. Furthermore, assume that Zij is the largest of

these chi-square variates. Let

Cj = Z.ij/(R j- + Zij) (12)

Then Cj has "Cochran's" distribution as described by Cochran (1941).

An upper critical point of Cj thus provides a critical region for a

test of the hypothesis

H0 : i = 0

Multiplication of Cj by j gives the Uj distribution tabulated by

Holms and Berrettoni (1967).

Chain Pooling

Consider a sequential deletion procedure that operates as follows:

The residual sum of squares has mp degrees of freedom. A hypothesis
test is performed against the Uj distribution where j - 1 = mp and

Zj is the smallest, over all terms in the model, of the decrease, Zij,
in the regression sum of squares on deletion of the ith term.

Form the statistic

Wj = jZ./(Rj_1 + Zj) (13)



Because of the violations of the assumptions of Cochran's distribution

that are introduced by this procedure, Zj + Rj_I will not in general be

the sum of j random variables independently drawn from a single pX2 (1)

distribution with Zj being the largest among them. As a matter of

fact, in typical regression problems, an arbitrary initial 
residual with

mp0  degrees of freedom might be large enough so that with j - 1 = mpO ,

Rj_/mp0 > Z.

On the other hand, as the sequential deletion procedure continues,

by increasing j one unit at a time with each Zj+ 1 _ Zj, the statistic

Wj should become an increasingly better approximation to Uj. Accord-

ingly, the sequential deletion procedure will use the upper 1 - a per-

cent points of the Uj distribution as the critical values of a decision

procedure based on the statistic Wj. Furthermore, the sequential dele-

tion procedure will use the conditional pooling of the "chain pooling"

strategy of Holms and Berrettoni (1969) with components (mpo,ap, and af).

In this strategy, mp0 is the number of degrees of freedom in the initial

residual. The decision procedure then consists of sequential compound

hypothesis testing. The procedure begins using the Wj statistic at

significance level ap. As long as Zj tests nonsignificant at level

ap, it is pooled into the Rj_1 component of the denominator of Wj in

preparation for the next test in the sequential deletion procedure.

With the first Zj testing significant at level ap, testing at level

ap and the pooling of mean squares into the denominator ceases, and

testing at level af begins. Suppose at this point that j = jp. At

this point, Rj-_ is no longer augmented with values of Zj that are not

significant at level af. Furthermore, the critical value of Uj re-

mains fixed at its value for j = jp and testing of the Zj continues

until some Zj tests as significant at level cf. Suppose this occurs

at jf. Then the associated regression coefficient is retained in the

fitted equation and the decision procedure (sequential deletion) termi-

nates. Within the strategy (mn0, Op, cf) , the consideration of af > ap
is unreasonable, and so the values of ap and af, for which Uj has

been tabulated and that are to be investigated, are as listed in table XI.

The use of the Uj statistic is based on the assumption that the

random observation error is independently normally distributed. As was

shown by Holms and Berrettoni (1967) the operating characteristics of the

chain pooling procedure remain essentially unaffected for an error with

the same mean and variance but with a rectangular distribution. This re-

sult is not surprising in view of the fact that the coefficient estimates

are always a sum of 2 g
-h  observations, for which approximate normality

can be expected, according to the central limit theorem. In other words

the chain pooling is regarded as being generally robust with respect to

the assumption of normality.
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Principal Components Regression and Model Deletion

The possibility of extending a chain-type decision procedure to cor-
related estimates was suggested by Kennedy and Bancroft (1971) wherein
they would apply orthogonalizing transformations to the original regres-
sors. The use of orthogonalizing transformations in regression analysis
had been suggested under the name of principal components regression by
Kendall (1957). Further discussion of principal components and subset
regression was provided by Massy (1965). The implications of combining
principal components with chain pooling will be discussed in this section.
Some insights into these matters are provided by numbers called the char-
acteristic roots or the eigenvalues of the orthogonalizing transforma-
tions. The roles they play will be more fully discussed in a subsequent
section. It deals with the transformations back to the original regres-
sors that follow after a subset regression has been performed on the
orthogonalized regressors.

In the method of principal components, the regressors of equation (4)
are transformed to an orthogonal set and associated eigenvalues (charac-
teristic roots) wl, . . , wt are also computed. Where the coordinates
along the eigen vectors are wi, the fitted equation is

Y = a0 + 1W1 + a2"2 + • + at-1lt-l (14)

The regression sum of squares is thereby partitioned into a set of mean
squares (MSi) associated with the coefficient estimates and eigenvalues
as follows (p. 70, Kendall (1957)):

^2
MS. = a ii (15)

where wi is the characteristic root associated with wi .

In the procedure of Holms and Berrettoni (1969), where ai is the
population coefficient of the ith term

E(MSi) = 2 + ta
i

and if Xi is the noncentrality parameter for MSi, then

2/2 2 2S = t ; E(MS) + . = (1 G  X i) 2

and from equation (15)

^2 2

E(wmi.) = (1 + Xi)o

In his illustrative example, Kendall (1957) dealt with a situation
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where two of the wi were small and where the corresponding MSi were

small. His discussion did not answer the question of what one would con-

clude or do if, for example, w4 were small and w5 were large, while

MS4 were large and MS5 were small. An approach to this question was

provided by Massy (1965) who differentiated between two circumstances as

follows:

"a. Delete the components that are relatively unimportant as pre-

dictors of the original independent variables (X) in the problem;

i.e., the components having the smallest eigen vectors should be

dropped."

or

"b. Delete the components that are relatively unimportant as pre-

dictors of the dependent variable (Y) in the problem. In this case

the components having the smallest values of gamma (the correlation

between the components and Y) should be dropped."

The objective of the present investigation is to minimize errors of

prediction, correspondingly the point of view is not necessarily either

one of Massy's (1965) criteria "a" or 'b."

The predictive error of the equation resulting from a subset regres-

sion procedure depends upon both bias error and variance error. The re-

jection of too many terms causes excessive bias error, and the retention

of too many terms can cause excessive variance error. The subset regres-

sion procedure is to be optimized by minimizing the prediction error.

But by the orthogonalizing process, the total variance of the observed

dependent variable is partitioned into a set of independent mean squares

and the smaller of these mean squares represent contributions to the var-

iance error while their associated terms in the orthogonalized regression

equation do little to reduce the bias error. Thus a procedure such as

chain pooling, which rejects terms corresponding to the smaller mean

squares, could be ideal for providing a subset regression procedure that

would minimize the predictive error.

The basic concept of chain pooling is that beyond the &0 of (14),
the coefficient estimates have been ordered in the decreasing order of

their associated mean squares and that n of the estimates associated

with the n smallest mean squares should be set equal to zero, while p

of them are retained. Thus n and p are regarded as unknown integer
parameters where

p + n + 1 = t (16)

The model equation is

Y = 0 + a + . + a pW + a w +lcp + . a + w p+n (17)pn 1 0 +1 o+1 • o+n o+n
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The method of chain pooling concerned the hypothesis

Ha:a +l =  = p+2 . = + = 0

where n was to be estimated in some manner that would minimize some
combination of weighted averages of the Type 1 and Type 2 error proba-
bilities for the decisions ai = 0. This optimal estimate of n was to
be achieved using a decision strategy (mp, ad, af) where the parameters
of the strategy are as defined by Holms and errettoni (1969).

The point of view of the present investigation is that the basic
chain pooling approach should be retained but that the components (mp,
ap, af) of the strategy should be optimized for another criterion, namely
to minimize the expected prediction error, that is, r = p should be
chosen to give a prediction equation

Y = "0 
+ al 1 + 22 +  + a r w r (18)

such that E(Y - (W)) 2 is minimized for some appropriately chosen value
of W where W is a vector of values of the orthogonal regressors but
not necessarily a vector of values for which the experiment was performed.
Instead, W should be chosen according to the domain of intended applica-
tion of the fitted model.

When equation (18) has been transformed back into the coordinates of
equation (4),.the property of minimum prediction error achieved for Y
is speculated to be retained. This speculation is based on a theorem
that was proven by Kennedy and Bancroft (1971) for a decision procedure
that has some similarities to chain pooling. Their analysis was con-
cerned with a prior established order of significance testing and there
is no direct connection between their distributional theory and the
theory for chain pooling. What they showed was that the variance error
and bias, and hence the mean square prediction error of their reduced
models, is invariant under an orthogonal transformation of the regressor
variables.

Transformations Back to Original Regressors

The subject of principal components analysis had been developed with
a view to its application to situations in multivariate analysis where
all the variables are regarded as random variables. Such a development
was given by Kendall and Stuart (1966), Vol. 3, pages 285-289. The pres-
ent discussion of regression analysis deals with situations where the in-
dependent variables are observed or controlled with negligible error.
Nevertheless the actual values given to the independent variables may be
looked upon as random variates and thus for any given experiment, many
aspects of the spatial distribution of the points of the regressor vari-
ables may be studied from the point of view of principal components
analysis.
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A valuable set of numbers characterizing the spatial distribution of

the points of the experiment is the set of eigenvalues associated with

the transformation of the original regressors to an orthogonal set. The

relative magnitudes of these eigenvalues are measures of how widely spread

the experimental points are in the directions of the eigen vectors. Thus

a severe multicolinearity in the original variables is a consequence of

the spatial distribution of the points being concentrated near a multi-

dimensional plane. One of the new coordinates will be normal to this

plane and its associated eigenvalue will be very small (Kendall and

Stuart (1966)).

Some insight into the implications of the eigenvalues can be gained

from figure 1, which compares two situations with differing eigenvalues.

The true (but unknown) values of the dependent variable are assumed to be

given (as a function of the regressor variables x I and x2) by the

dashed contour lines. A strong colinearity between xl and x2  is
illustrated by the distribution of the points of figure l(a) which after

transformation to principal components would be evidenced by a small

value of w 2. Setting w 2 = 0 imposes the subsidiary condition of

xl = x 2 and this is a mathematical statement of the fact that the space

of the xi was not well spanned by the experiment. The prediction equa-

tion can be either

Y = b 0 + blx1

or

Y = b0 + blx2

but the uses of the equation must be restricted to values of xl and x2
such that

xl = x2

In figure l(b) , neither l nor w2 are small, however, the true popu-

lation is such that MS2 (and therefore a2 ) is not significant. Because

of the insignificance, the predictive equation in the principal components
is

Y = a0 + alw1

however, the predictive equation in the original coordinates contains
both of them:

Y = b0 + bl(x1 + x2 )

because the values of wl and w2 have now shown that the space of the

xi is well spanned by the experiment. Also, this fact and the insignifi-

cance of MS2 has shown that Y does not vary with w2, namely Y is a
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constant on any line for which xl + x2 is a constant. The preceding
discussion illustrates a typical usage of the combination of principal
components analysis with subset regression analysis. One situation re-

sulted in the two equivalent equations.

Y = 0 +  1X1

or

Y = + Ix2

whereas the other situation resulted in the model

Y = B+ B1 (x1 + x 2 )

where the values of the eigenvalues were crucial to the selection and
usage of the final form of the model in the original regressors.

The general situation now appears to be as follows. If the avail-
able experiment has colinearities in the original regressor variables
and does not furnish orthogonal estimates of the model parameters, the
methods of principal components can be used to provide orthogonal regres-
sors that will furnish uncorrelated estimates of the coefficients of the
orthogonal regressors. This process will furnish a set of eigenvalues
for the matrix product of the transpose and the design matrix of the
original regressors. The relative magnitudes of these eigenvalues now
present information as to how badly the original regressors are corre-
lated, or equivalently as to how badly ill-conditioned is the matrix
whose inversion would ordinarily be attempted. These eigenvalues are to
be judged from the standpoint of numerical analysis or computer round-off
errors or similar disciplines. The eigenvalues cannot be made the sub-
ject of a statistical decision procedure.

The elements which are made the subject of the chain pooling statis-
tical decision procedure are the MSi  that are associated with the
orthogonalized regressors. The deletions are therefore in the order of
the smallness of the MSi which from equation (15) are due either to a
small wi (as illustrated by fig. l(a)) or to a small &i (as illustrated
by fig. l(b)) or to both. The distinctions among these cases are vital
to the construction of a final model in the original coordinates. A small
value of MSi accompanied by a small value of wi implies that the co-
ordinate wi should be set equal to zero and setting that eigen vector
equal to zero imposes a single degree of freedom constraint on the space
of the original regressors implying that predictions are valid only for
combinations of the original regressors such that wi = 0. On the other
hand, a small MSi accompanied by a large wi would imply that ai is
small and that the dependent variable is essentially constant along lines
in the space of the original regressors for which all the orthogonalized
regressors except wi are constants. In this case the term with coeffi-
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cient ai would be deleted from equation (14), and correspondingly, the
original model would be limited to one less parameter, but it could con-
tain all of the original regressors.

The preceding discussion has been given in terms of linear trans-
formations between the xi and the wi . If the transformation between
the ui and the xi (eq. (3)) are also linear, the steps in the applica-
tion of principal components regression are as already described. If on
the other hand, the fi of equation (2) are nonlinear in the ui, the
consequences for the ui of setting some of the w i of equation (14)
equal to zero would deserve special attention.

CHOICE OF TRUE (POPULATION) MODEL FOR SIMULATIONS

Simulation Type Investigations

Optimality of model selection procedures is to be investigated. An
analytical investigation could provide answers in general terms. Because
of the complexity of the underlying statistical procedures, an analytical
investigation will not be attempted. Instead, the investigation will be
conducted by the performance of Monte Carlo simulations of experiments.
Such empirical investigations have the risks that the conclusion might
have severely restricted ranges of applicability. In discussions to fol-
low, the rationale will be given for the choice of the designs of the ex-
periments and for the choice of simulated population models so that the
conclusions will have wide ranges of usefulness.

The statistical decision procedure can be viewed as a game played
between nature and the statistician. The statistician's strategy is his
model selection procedure and he seeks to minimize the prediction error.
The strategy he should use is to be found by trial and error using com-
puter simulations. Nature's strategy must be built into the simulations.
This can be done to represent nature as an indifferent opponent in which
case the empirically optimized strategy will have a sort of Bayes opti-
mality. The simulations could otherwise be done to represent nature as
an aggressive opponent who would choose the worst possible population
model against the statistician's best possible procedure. Under these
conditions the statistician's empirically optimized procedure could be
called a security strategy as defined by Luce and Raiffa (1957).

Unfavorable Population Models

In an empirical study of decision procedures for model selection in
the absence of pure replication (Holms and Berrettoni (1969)) the concern
was not with prediction errors resulting from the choice of model equa-
tion, but instead was confined to the count of decision errors in accept-
ing or rejecting terms. That investigation of decision procedures was
given a security quality by optimizing the recommended procedure against
an "unfavorable distribution" of the parameters (regression coefficients).
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On the other hand, if the procedure is to be optimized with respect

to prediction errors in a manner that is also a security strategy, two

"unfavorable" conditions should be introduced, namely, (1) the distribu-

tion of the values of the parameters should be unfavorable to the deci-

sion procedure, and (2) the true shape of the function to be fitted

should be unfavorable with respect to what would constitute a popular or

reasonable form of the initial polynomial model. Thus the criterion ad-

vanced here is not that the fitting and selection procedure should merely

find good estimates of the true parameters of an unknown finite poly-

nomial, but rather that the fitting and selection procedure should find a

good predictive equation even if the unknown function is one that cannot

be represented exactly by a finite polynomial.

If the true shape of the function to be fitted is particularly un-

favorable to the model selection procedure, then the empirically opti-

mized procedure will have an approximate security optimality. But

another type of optimality could be of interest. The simulations could

be performed with the true shape of the function to be fitted being a

type that is most likely to be encountered in practice. Then if the pro-

cedure were empirically optimized to minimize mean square errors of pre-

diction for such a function, the resulting procedure could be labeled as

an approximate maximum likelihood optimal procedure. To keep the inves-

tigation to a manageable size, and still keep it highly applicable to

real life situations, conditions of the investigation will be chosen that

will optimize the decision procedures against a blending of the two

points of view just expressed, as follows: (1) To simulate the type of

function expected to be met in practice (particularly in the practice of

empirical optimum seeking) it will be an "inclined bell-shaped mountain"

in several variables. Differing combinations of slope and "peakedness"

can then represent the differing situations that might occur, for example,
in optimum seeking experiments that begin with the method of steepest

ascents and then, depending on the observed topology, go to the method of

local exploration. To the extent that such a "bell-shaped mountain" is

typical, this aspect of the investigation will result in decision proce-

dures that have a maximum likelihood quality. The model that will be

fitted to the results of an experiment will be a polynomial in several

variables with a finite number of terms. The true function is unfavor-

able with respect to such a model because the true model is a transcen-

dental function, so that an exact polynomial representation would require

an infinite series of terms. Of course, in any one simulation, a poly-

nomial model containing t terms could be fitted exactly to the t ob-
servations associated with t treatments, however, the simulation will

add a random error component to the observed values of the function, so

that the fitted polynomial will usually fail to predict the true function

values at the coordinates of the treatments. (2) In such a situation

(with the model containing a number of terms equal to the number of treat-

ments) some of the terms might be almost wholly error and thus add to the

errors of prediction. Therefore a model selection procedure that rejects

terms judged to be insignificant could operate to reduce the errors of

prediction. The effectiveness of such a rejection procedure will be se-
verely tested by giving the parameters values that, relative to each
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other, are unfavorable to the rejection procedure. This will be done in a
manner to be described under the heading of "Choice of Population Parameter
Values Unfavorable to the Decision Procedure."

Functional Form of Population Model

The population model can be given the form of a bell-shaped mountain
through an adaptation of the multivariate normal density function for g
independent normal random variables. Such a function is given by

/ 2

f(xl, . . x, Xg)= jJk= (19)

where Vk is the population mean of xk and Uk is the standard devia-
tion of xk. On any one coordinate, the function has a maximum at

xk = Pk and it has points of inflection at Xk = 1k ± Ok. The coordi-
nates of the treatments consist of conmbinations of plus and minus ones.
The population model will be made asymmetrical with respect to any plan of
an experiment by locating its point of symmetry at one of the possible
treatment points.

The true (population) model will be a "multidimensional inclined
bell-shaped mountain" because it will be given a functional form as
follows:

S g

im l kxik +.... (0

k=l

The parameters of equation (20) have purposes as follows:

Iitm dependent variable, function of the xik

06 scale parameter. Because a = 1 the coefficient of variation is
proportional to the reciprocal of 06.

*k coefficients of first degree terms

T scale factor for exponential term
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k coefficients of exponents

6k  location parameters of mountain peak

Other symbols of equation (20) are defined in appendix A. The plan
of the experiment is a 1/2h replicate of a full factorial experiment
with g independent variables, and the number of treatments, t, is
therefore

t = 2g-h (21)

The subscripts have the domains

i= 1, . . ., t

k=l,. ., g

m=1, . . ., m

Influence of Parameters on Shape of Surface

As shown by equation (20) if Tm = 0 the only odd degree terms are
PXil, . .* *tgxig and therefore the surface defined by (20) is inclined
with respect to the coordinates by the values given to the coefficients

', . . .', 9g, and they define the approximate inclination of the surface
with respect to axes through the origin if Tm is small. These inclina-
tions of the surface are fixed by the function

g

Ai = 1 + /kxik (22)

k=l

The bell shape is provided by the exponent of the exponential compo-
nent of equation (20) and the exponent is

g

C (xik - 6k ) 2  
(23)

k=l

If Tm is large in comparison with the values of k, the function given
by equation (23) will provide a local maximum for (20) when (23) takes on
the value of zero. The plan of the experiment will consist of treatments
having coordinates such that xik = -1. Also, the 6k will be given
values of +1. Thus the local maximum will occur at a corner point of
the hypercube of the experiment, namely at the corner point for which
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Xik = 6k for k = 1, . . ., g. Furthermore, as is well known from the
literature on the normal distribution density function, the function de-
fined by equation (23) implies that the function defined by equation (20)
will have two points of inflection on each coordinate axes. If these
points are named Xak and xbk they are located by the equations:

Xak = 6 k -1/(2 1/2

(24)

Xbk = 6k + 1/(2k 1
/ 2

The values of Xak for 6k = 1 are given by table III.

The magnitude of the function given by (20) relative to the error
variance a can be adjusted by adjusting the value of the population
parameter eO. Thus the effect on optimal estimation procedures of the
relation between function mean values given by (20) and the error vari-
ance a 2  can be investigated by assigning a fixed value to 02 (namely
G2 = 1) and then investigating the effects of changes in the parameter

6k. (Thus the model has been made consistent with the usual assumption
that a2 is constant over the space of the experiment.)

Choice of Population Parameter Values Unfavorable

to the Decision Procedure

The set of values (mp, ap, af) will be called the statisticians
strategy. The set of values k, #ko, e, and Tm (see eq. (20)) will be
called nature's strategy. The question arises as to what constitutes a
least favorable, or as an approximation, what will constitute a highly
unfavorable set of values of the parameters in nature's strategy?

With respect to the decision procedure, and for the two level frac-
tional factorial experiments, an unfavorable distribution of the param-
eters (coefficients of the terms of the linear model) occurs if the param-
eters (p in number) have the expectations of the order statistics of a
normal distribution for a sample of size p. (See Holms and Berrettoni
(1969).) Assume that observations are drawn with a sample of size g.
Let the fractiles be qj where j = 1, . . ., g. The sample fractiles
are

q = j/(1 + g) (25)

These values of q. for g = 4, 5, 6, 7, 8 are shown in table I. If
the sample order statistics corresponding to these fractiles lie approxi-
mately on a straight line on probability paper, then the sample is con-
cluded to have been drawn from the distribution represented by the prob-
ability paper.
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Probability paper for the half normal distribution was used for fig-
ure 2 and consists of coordinates for the fractiles, qj, and the fractile
points, j. Straight lines were drawn on these graphs connecting the
origin with the point defined by qj q and 1 = i. Values along
these straight lines were then read to yield the values of kj shown in
table II. Thus if these values of j are separate population param-
eters for each of which single sample values are drawn, the sample values
will approximate their mean values and therefore they will approximate
the order statistics of samples of size g drawn from half normal dis-
tributions. Thus the 'k of equation (20) are likely to result in first
degree regressor coefficient estimates of the fitted equation and associ-
ated mean squares that will be declared insignificant by the decision
procedure. Such decision errors have two undesirable consequences,
namely, first some appropriate first degree terms are immediately lost
from the fitted model and second, the denominator of the test statistic
is made too large so that useful higher order coefficients are also de-
leted. The distribution of the *k thus appears to be unfavorable even
if the Tm of equation (20) is nonzero.

The Ij therefore constitute a distribution of parameters unfavor-
able to the decision procedure based on the Uj distribution and using
the strategy (mi, ~ , af). (See Holms and Berrettoni (1969) for further
discussion of this ind of an unfavorable distribution of parameters.)

The particular values chosen for the Pk of equation (20) have been
discussed in connection with the description of tables I and II. For
simplicity, the values of the k of equation (20) will be set equal to
the 4k values of table II.

The complexity of the fitted equation needed to represent a popula-
tion model depends on the surface irregularities that occur within the
domain of the experiment. (A basic assumption is that good prediction
accuracy of the fitted equation is to be expected only within the domain
of the experiment.) The domain of the experiment is defined by its
corner points and they are located at xk = ±i. Thus the domain is de-
fined for all k by -1 I xk  i. One type of surface irregularity that
can occur within the domain of the experiment is a local maximum and as
may be seen from equation (20) if Tm is sufficiently large with respect
to pk, a local maximum occurs at xk = 

6k for any k. Another type of
irregularity is defined by points of inflection. As developed in the
discussion of equations (24) the coordinates of the points of inflection
of the bell-shaped surface defined by equation (20) are given by equa-
tions (24). Consider for example, the values listed in table III for
g = 8. Then xak of equation (24) is within the domain of the experi-
ment for k = 1, 2, 3, 4, 5, 6, and 7 but is outside for k = 8. (All of
the points of inflection defined by xbk of equations (24) are outside
of the domain of the experiment..)

In view of the discussion of equation (19) the final form of the
population model equation is an adjusted form of equation (20) namely
it is
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+ e k=l (26)

kk=l

Equation (27) results from substituting from equations (22) and (23) in

equation (20). With 4k = lk the useful computing equations are (22),
(23), and (27).

-C
ii£m = [A.,+ Tme - C i) (27)

Choice of Scale Parameter Values

Nine values of 6£ will be investigated, namely, Ot = 1/8, 1/4, 1/2,
1, 2, 4, 8, 16, and 32. Three values of Tm will be investigated,
namely Tm = 0.0, 1.0, and 2.0. The simulations will be performed for
almost all combinations of these 6Z and Tm values.

EVALUATION OF DECISION PROCEDURE

Following the selection of terms (where some of the coefficient esti-
mates are set equal to zero), the predicted values of the dependent vari-
able can be efficiently computed for all of the possible combinations of
the independent values, by the reverse Yates method of Duckworth (1965).

Where e0in are the "observation" errors, namely the pseudo normal
random numbers generated in the nth simulation, the "observations" are
given by

YOimn m + e Oin i = 1, 2, . . .,2 g - h  (28)

After the model has been fitted and insignificant terms deleted, the
difference between predicted values, ypitmn, of the dependent variable
for the nth simulation and the population mean will be called the predic-
tion error, and thus it is

epin = Ypimn - Pim i = 1, 2, . .. , 2 (29)

Over the ne simulations, the sample mean square error of prediction
for a given treatment is
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ne

epitm n // epikmn (30)
n=l

The maximum of such errors over the treatments is

2 .2 _2
emax = epm,max = max \epitm) (31)

i=1,...,28

The mean of the squared error over the simulations and over the

points of the space of the experiment is

-2 1 -2epm = - epim (32)
2g-

i=1

Equations (31) and (32) provide two criteria for measuring the effec-

tiveness of a strategy (m,, ap, af). The triad of particular values of
mp, la, and af that minimizes -pLm,max (as given by eq. (31)) can be
calle a security strategy, and the triad of values that minimizes e m-2
can be called an approximate Bayes strategy, if the points of the space
of the experiment are assumed to be equally likely of being of interest.
In either case, the absolute values of squared errors would have been the
prime consideration.

An example of a situation where such definitions of error would be
appropriate occurs if the experimentor seeks to maximize some predicted
response, such as the strength of a material as a function of its ingre-
dients. For such an example, the region of the space of the experiment
of greatest interest would be the region in the vicinity of the maximum
point, where the function would most likely have its sharpest curvatures
and largest errors due to lack of fit. As was discussed in connection
with equation (23), this is the point where xik = 6

k . For such an exam-
ple, the appropriate criterion to be minimized for the choice of a strat-

-2
egy would seem to be the quantity eptm,max of equation (31).

The criteria of equations (31) and (32) will be evaluated using com-
puter simulations using (in most cases) 1000 experiments. Thus the long
run mean squared error of the decision procedures will be evaluated.
This leaves open the question of how badly a decision procedure might
perform in individual cases. One approach to this question is to evalu-
ate the stability of the mean squared errors observed in the simulations.
Thus in addition to the criteria of equations (31) and (32), two other
criteria for the effectiveness of a strategy (mp, ap, af) will be inves-
tigated. They are concerned with the stability of the quantities defined
by equations (31) and (32). The instability of these criteria can be
measured by the variance of the square of the prediction error. If Y
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is a random variable, the unbiased estimate of the variance of Y from a
sample of size ne is given by

ne ne \2-- nn
ey 1 W' 2 i

^V(Y) = 1 ~ Y - -- ) Y (33)
ne-1 n n e n

n=l

Te random variate of interest is the squared error of prediction, namely
epiYmn. From equation (33) the estimate of the variance of epitmn is

ne /ne 2

1 2 2
S(e

2  ) = -(e
2. ) ) e . (34)

pikmn n - L (epiZmn n e / plkmne n=l \n=1

Equation (34) gives an unbiased estimate of the variance of the squared
error over ne simulations. The maximum of this quantity over the space
of the simulated experiments is defined by

V(2) = V(e2 ) = max !V(e2. ) (35)
max km max i=lp... C imn

The arithmetic mean of the variance of the squared error over the
space of the experiments is defined by

28

Ve k - V(e2 in) (36)
m 2g pi9,mn2 --

i=l

DESIGNS OF SIMULATED EXPERIMENTS

Number of Treatments

Although statistical decision procedures can be defined operationally
for any size of sample, however small, the point of view of the present
investigation is that an experiment should (1) furnish all of the informa-
tion to estimate the model coefficients and (2) provide adequate test sta-
tistics for the model selection procedure. A further assumption is that
to provide reasonably good estimates for both the numerators and the de-
nominators of the test statistics, the experiment must contain at least
16 observations.

Plans of Experiments

An experiment plan will be defined as a sequence of t specified
treatments involving g independent variables. The experiment will be
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a 1/2h fraction of the full factorial experiment. The number of treat-
ments is therefore as given by equation (21):

t = 2 g-h

For the present investigation with g = 4, 5, 6, 7, and 8, and using
16 treatments in each experiment, the plans (using the notation of Holms
(1967)) will be generated one from the other as follows:

g = 5, h = 1:

X5 = X2X3X4

X0 = X2X3X4X 5

g = 6, h = 2:

X6 = XIX3X4

X 2 = X2X3X X5 = X1X3X4X 6

g = 7, h = 3:

X7 = XX2X4

X0 = X2X3X4X5 = X1X3X4 X6 1 XX2X4X7

g = 8, h = 4:

X = X1 X2X 3

X0 = X2X3X4X5 = XX3X4X6 = X1 X 2X 4X 7 = XX 2X 3X 8

These generators are also displayed by table IV. The corresponding
groups of defining contrasts are displayed by table V. The plan matrix
of treatments for the full factorial experiment on four independent vari-
ables may be seen by looking at the first four columns of table VI. For
the fractional replicates defined in table IV, the levels of the added
independent variable for g = 5, 6, 7, 8 are shown by the fifth, sixth,
seventh, and eighth columns of table VI. Yates' notation for treatments
and their order is shown in table VII. The treatments of table VI (in
Yates' notation and order) and some of the lower order elements of the
aliased sets of parameters (for g = 4, 5, 6, 7, and 8) are shown in
table VIII as derived from table V.
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Aliased Parameters Initially Assumed to be Nonzero

In the fitting of models to the fractional factorial experiments,
one or more of three assumptions will often be made, in choosing param-
eters for the initial model from aliased sets of parameters.

1. A first degree term is always preferred to a two factor inter-
action.

2. A lower order interaction is always preferred to a relatively
higher order interaction.

3. The experimentor can label the independent variables X1 , . .,X
in the relative order of his belief as to their relative tendency to
interact. (The design of blocked fractional factorial experiments ac-
cording to prior beliefs about the parameters has been discussed by Sidik
and Holms (1971) and also by Sidik (1972c) and (1973).

Aliased sets of the lower order parameters corresponding to the esti-
mates provided by the experiments are shown in table VIII. These esti-
mates will be associated with, and given the name of, only one of the
parameters in each of the aliased sets, and all other parameters in an
aliased set will be set equal to zero. The parameters to be retained
for the initial model will be selected in a manner consistent with the
three previously stated assumptions.

In the aliased combinations, the lowest degree parameters will be
assumed to be the only possible nonzero parameters in any aliased set.
Where there is more than one parameter of lowest degree, the parameter
with the lowest sum of its subscripts will be assumed to be the only
nonzero parameter of the aliased set. If there is more than one param-
eter of lowest degree with lowest sum of subscripts, that parameter will
be assumed nonzero which has the lowest first subscript, or lowest sum
of its first two subscripts, or lowest sum of its first three subscripts,
and so forth.

Based on the preceding rules (and before the deletion of terms under
the statistical decision procedures) the assumed nonzero parameters of
the model equations to be initially fitted to the observations are
exhibited by the equations of table IX.

Space for Which Predictions Will Be Evaluated

In the case of a fractional factorial plan, the parameter estimates
are based on the observations generated from population mean values ac-
cording to equation (26) for the particular treatments (particular com-
binations of +1 and -1 for the independent variables) as specified by the
fractional factorial plan. The estimated parameters then give a predic-
tion equation which should be usable at least for predicting values of'
the dependent variable corresponding to the treatments actually present
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in the particular fractional factorial plan. However, the experimental

space consisting of all possible combinations of +1 
and -1 for the inde-

pendent variables can be said to have been "spanned" 
by the treatments

actually used in the fractional factorial plan. The question arises as

to whether the predicting equation should also be used for predicting

values of the dependent variable for points in the space of the experi-

ment that are not in the fractional factorial plan. The object in laying

down the procedures of the present investigation is to try to simulate

those assumptions that would ordinarily be made by an experimentor. In

this case the question may be rephrased as: "Does the making of predic-

tions at points which are points of the full factorial design, but not

points of the fractional design actually run, constitute an act of extrap-

olation (not generally allowable) or an act of interpolation (generally

allowable)?" The assumption now made is that such predictions will be

viewed as interpolations - that the fitted model ought to be useful in

making predictions at all of the points within the space "spanned" by the

experiment. Thus the equations of table IX will be used for making pre-

dictions at all possible combinations of values of +1 and -1 for the Xk

and not just those values listed in table VI.

Correspondingly, although the fractional factorial plans all have

2g-h = 16, the number of points for which predicted values will be com-

pared with population values is always 28. Therefore for g = 4, 5, 6,

7, and 8, the numbers of comparisons between population values and pre-

dicted values will be 16, 32, 64, 128, and 256, respectively. For these

comparisons, the predicted values can be obtained using the "reversed

Yates Method" as described by Duckworth (1965).

COMPUTER PROGRAMS

Flow Diagram of Program POOLES

The main logic of the program POOLES is shown by the flow diagram

of figure 3. The Yates method subroutine (section 9) as called in sec-

tion 2, the computation and ordering of mean squares in section 3, and

the sequential deletion procedure of section 4, are essentially the same

as the similar operations of "POOLMS" (as given by Amling and Holms

(1973)). "POOLES" differs from "POOLMS" mainly in sections 1, 2, 5, 6,

and 7; the reason for the additional sections being that "POOLES" pro-

vides a Monte Carlo evaluation of the pooling strategies based on errors

of predictions.

Details of Program POOLES

Section 1: Declarations, constants, population means, and strategy.

The constants defining the populations, the experiments, and the sequen-

tial deletion strategy, are read from data cards in the following order,
with the order of the fields being the same as the order of the symbols

in the following description:
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Format Description

(13A6, A2) Arbitrary literal information such
as particular use of program,
date of last change, and so forth

(315) LGMH, NE

(15, 8F5.0) KG, (PSI(K), K=l, KG)

(15, 8F5.0) KG, (PHI(K), K=l, KG)

(15, 8F5.0) KG, (DEL(K), K=l, KG)

(15, 8F5.0) LTH, (THETA(L), L=l, LTH)

(15, 8F5.0) MTAU, (TAU(M), M=l, MTAU)

(315) MP, KP, KF

After the declarations and initial constants have been read, the
major operation is the synthesis of the population mean values in accord-
ance with equations (22), (23), and (27). The solutions of these equa-
tions (the synthesized values of itm) are to be stored in an array
coded as YiMU (I,L,M). The points in the space of the experiment are ac-
counted for by the loop "DO 20 I = 1, IP." Within that loop, construc-
tion of the Ai and Ci of equations (22) and (23) is done within the
loop "DO 15 K=1, KG." The loop contains some special NASA-Lewis func-
tions available within the IBM 7044-7094 direct couple system. As used
in POOLES the Boolean function AND ((1-1), J) gives the logical intersec-
tion of two 36 bit integer arguments as a real function. As used in
POOLES the Lewis shift function IARS (KM, AX) gives the integer function
resulting from the accumulator right shift of the real variable AX by the
integer number KM1 of binary places.

The constructions of itm over the number of predicted values IP
are then repeated for all values k = 1, . . ., L " and m = 1, . . ., m

by the loops "DO 49 M=l, MTAU" and "DO 48 L=1, LTH." The array YMU
(I,L,M) then contains all the population means as determined by equa-
tion (27).

For the given experiment plan and for the established sets of popu-
lation means, more than one model deletion strategy can be evaluated.
The strategy to be evaluated, and its subsequent evaluation, begins with
the statement "50 READ (5,824) MP, KP, KF." On completion of the evalua-
tion of a particular strategy, control is transferred back to statement
50. Subsequent strategy investigations are initiated by reading addi-
tional data cards according to statement 50. The operation of the pro-
gram ends when such cards are exhausted.

The error simulations are generated so that each strategy is com-
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pared for the same set of ne time 2g-h random numbers. This is

achieved by reinitializing the random number generator for each new

strategy with the statement "CALL SAND (XS)." The procedure generates

a sequence of pseudo random numbers with a rectangular distribution by
taking the low order 36 bits of the product rr-1 *K where rr-1 = pre-
vious random number and ro = 1 and K = 515. This fixed point number
is then floated and returned to the calling program as a floating point

number between 0 and 1 (Tausky and Todd (1956)).

The prediction errors and their squares are stored in the arrays
ERSQ (I,L,M) AND ERSQSQ (I,L,M). These arrays are initially cleared by
the loops terminating at statements 97, 98, and 99. The arrays ERSQ and
ERSQSQ used a large amount of storage. Many simulations used L = 6

and M = 6 but storage was exceeded with I = 256. To accommodate
I = 256, the necessarily smaller values of L and M were used by mak-
ing the appropriate changes in the DIMENSION and FORMAT statements.

Section 2: Simulations and model fitting. - The number of experi-
ments simulated is NE. The performance of these experiments and their
analysis is controlled by the loop: "DO 699 N=l, NE." Within each ex-
periment, the pseudo-normal random numbers for the IT treatments are
generated within the loop "DO 215 I=1, IT, 2," the transformation to
approximate normality being that described by Box and Muller (1958).
Each set of IT random numbers for an experiment is used with all pos-
sible combination of the population parameters 6O and Tm through the
statements "DO 690 M=1, MTAU" and"DO 680 L=l, LTH." For all of these
cases, the simulated observation errors, as stored in RN(I), are to be
added to the population mean values (stored in YMU (I,L,M)) for the par-
ticular treatments (I = 1i, . .. , IT) that were specified for particular
values of g by table VI. Accordingly as g = 4, 5, 6, 7, or 8 (that
is, according to the value of KG) control is transferred to statements
204, 205, 206, 207, or 208.

After synthesizing the "observed" values of YOBS(I) the "SUBROUTINE
YATES" (section 9) ending with statement 909 is used to compute the
array B(I) which contains (except for division by the number of treat-
ments) the Yates estimates of the parameters of table VIII. (The opera-
tion of the statements within SUBROUTINE YATES was described by Amling
and Holms (1973).)

Section 3: Construction and ordering of mean squares. - The mean
squares are formed from the parameter estimates (for those terms beyond
0) and a pointer function is created within the loop "DO 309 I=1, IT."

The strategy of doing no sequential deletion is represented by the code
mp = 0, and if mp = 0, control is transferred to section 5. Otherwise,
ordering of the mean squares is done within the loop "DO 313 J=1, ITM2."

Section 4: Deletion of terms. - The statistical decision procedure
using the strategy (mp, ae, af) is applied in this section as was de-
scribed for POOLMS by Amling and Holms (1973). The sequential deletion
begins with the pooling of the initial residual within the loop
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"DO 415 J=1, MP." The sequential deletion based on conditional pooling
("chain pooling") then proceeds within the loop "DO 419 J=MPPl, ITM1."
This results in the retention in the model of $0  and rejection from
the model of all terms with mean squares as small or smaller than the
ordered mean square with subscript JETA.

Section 5: Predictions. - Predicted values of the dependent vari-
able for all the 2g points of the experiment space spanned by the frac-
tional factorial experiment are computed in this section using SUBROUTINE
YATES and the reversed Yates method as proposed by Duckworth (1965).

The operation of Yates' method followed by the "reversed Yates
method" is illustrated by the following table for a 22 experiment:

YATES METHOD

YOBS B B/FIP

Y Y1 + Y2 Y1 + Y2 + Y3 +  Y4 (Y1 + Y2 + Y3 + Y4 ) /4

Y2 Y3 
+ Y4  Y2 - Y1 

+ Y4 - Y3  (Y2 - Y1 
+ Y4 - Y3) / 4

Y3 Y2 - Y1 Y3 + Y4 - Y1 - Y2 (Y3 + Y4 - Y1 - Y2)/4
Y4 Y4 - Y3 Y4 - Y3 - Y2 + Y1. (Y4 - Y 3 - Y2 + Y1 ) /4

REVERSED YATES METHOD

YOBS B YPRED

(Y - -Y2 + Y1)/4 (Y 4 -Y 2)/2 Y4  Y1
(Y3 + Y - Y1 - Y2)/4 (Y2 + Y4 )/2 Y3 Y2

(Y2 - Y1 + Y - Y3)/4 (Y3 - Y1 )/2 Y2  Y3
(Y1 + Y2 + Y3 + Y4)/4 (Y1 

+ Y3)/2 Y1  Y4

In the case of the computer program, there are 2g-h  parameters
estimated from a fractional factorial experiment. They are exhibited
by the prediction equations of table IX. The reversed Yates method re-
quires the insertion of zeros for all parameters of a 2g model that
are not estimated in a 2g-h experiment. To make the 2g predictions
corresponding to experimental points of the full factorial experiment,
the 2 g-h coefficients together with 2 g - 2 g

-h  zeros are listed in
the correct Yates order for the 2g coefficients of a full factorial
experiment. The statements of section 5 then combine estimates for such
estimable parameters with zeros for the nonestimable parameters in the
reverse Yates method. This is done according as g = 4, 5, 6, 7, or 8
by the transfer of control to statements 540, 550, 560, 570, or 580,
respectively. This list is then reversed and the reversed Yates method
is used as in section 5.
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Section 6: Accumulation of errors. - The squared error for each
prediction is accumulated (as required by equation (30) in the array
ERSQ (I,L,M) as computed with the loop "DO 609 I=l, IP." These accumula-
tions are stored for each combination of L and M as indicated by the
loops terminating at statements 680 and 690, and this process is repeated
for each of the ne sets of IT random numbers as indicated by the loop
terminating at statement 699. For the purpose of computing the variance
of the squared error of prediction, the quantity

ne

n=l

of equation (34) is computed within the loop ending at statement 609 and
stored as ERSQSQ(I,L,M).

Section 7: Determination of maximum and mean squared errors and
their variances. - The purpose of this section is to determine maximums
and means of the prediction errors over the space of the experiment after
the errors have been evaluated over that space by accumulating over the
simulations. The accumulation over the number, ne, of simulations had
been stored in the array ERSQ(I,L,M). For particular L, and. M, the
determination of the largest prediction error over the space of the ex-
periment as defined by equation (31) is done through repeated use of the
library subroutine AMAX1, which determines a real number as a function of
two real arguments. This is done within the loop "DO 750 I=i, IP." The
summation for the mean squared prediction error over the space of the ex-
periment as required by equation (32) is also done within the same loop
terminating at statement 750. After division by the appropriate divisors,
these two evaluations of error are stored in the arrays (ERSQMX(L,M) and
AVERSQ(L,M). The quantity

ne 2,e 2
S2 2 e 2

pi - n \// epimn
e pikm

n=l n=l

is computed and stored as TEM within the loop ending at statement number
750. The quantity V(e2m)max defined by equation (35) is determined to
be the maximum of the values of TEM as determined by

E = AMAX1(E,TEM)

and from this maximum, V(e m)max is computed and stored with the state-
ment

VESQMX(L,M) = E/FNEMl

The sum of the values of TEM as given by
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F = F + TEM

is then used to compute V(em) according to equation (36) using the
statement

AVVESQ(L,M) = F/FEMlIP

The computation ends if the data for MP, KP, and KF is exhausted;
otherwise a new strategy is investigated by returning control to state-
ment 50.

Details of Program MODEL

The main work of the investigation was done with program POOLES.
Some properties of the population model were explored using a second pro-
gram called MODEL. A summary of the two programs showing their names,
principal options and outputs is contained in table X.

The program MODEL was used to exhibit the mean values of the popula-
tion without any variability introduced by randomness. Thus population
mean values were computed according to equation (26), but there was no
random number generator to generate errors with specified properties as
suggested by equation (28). The only errors are the round-off errors of
the computing system, and the system consisted of an IBM 7044 monitor
direct coupled to an IBM 7094 central computer. For that system, the
round-off error typically occurs in the eighth significant figure of deci-
mal output. The lack of intentional random error in the program MODEL
was symbolized by showing a2 = 0 in table X.

The manner in which the components (m, ap, af) influence the deci-
sion procedure was described by Holms and Berrettoni (1969). The manner
in which these parameters are read into the computer program was described
for a different program called POOLMS by Amling and Holms (1973). A
major distinction between POOLMS and the programs of the current investi-
gation is that the value m = 0 is now possible. Its use merely implies
that no deletion of any kind will be applied to the initial model. There-
fore, as suggested by the parameters of table X, the program MODEL gener-
ates no random error, and uses no statistical decision procedures on the
initial fitted models (as they were given in table IX).

The output of MODEL results from the following:

1. Population mean values are generated according to equation (26)
and listed as YMU(I,L,M).

2. The population mean values are used directly in the Yates proce-
dure to estimate the parameters of the initial models of table IX. These
estimates are listed as BILM(I,L,M).
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3. The reversed Yates method (Duckworth (1965)) is used to compute

predicted values for all of the 2g treatments of the full factorial ex-

periment. Differences between these predicted values and the population

values from equation (26) are defined as bias and are listed as the array
named BIAS(I,L,M).

Because 16 parameters are estimated from ortho onal contrasts of the

16 population values for the 16 treatments of the 2t experiment, the bias

for these treatments consists merely of computer round-off error. For

the cases of g > 4 (namely for the fractional replicate experiments) the

bias values for the points of the full 2g experiment not included in

the 16 points used for the estimating should be much larger than just

round-off error.

DESCRIPTION OF RESULTS

Bias Errors

The statistical decision procedure was investigated by fitting poly-

nomial equations to simulations of fractional factorial experiments of

type 2 g-h where g = 4, 5, 6, 7, and 8, and where h = g - 4. The poly-

nomials that might reasonably be fitted in such circumstances were listed

in table IX. If such fitted models are to be used for making predictions

at all of the hypercube points of the corresponding 2g, (full factorial)

experiment, then bias errors can be expected for those predictions that

are made at points of the space of the experiment that were not points

for which observed values were recorded. In order to best understand the

results of the Monte-Carlo simulations that will include both bias and

variance errors, the errors due to bias alone should be investigated.

As previously described, the program MODEL was written to exhibit
the bias errors that exist when there are no random errors and when there
is no model deletion. Some results are shown by table XII. As is shown

by table IX, the case of g = 4 has a starting model with 16 coeffi-

cients fitted to 16 "observations" and with h = 0, predictions are made
only for the points of the 16 observations. The result consists of 16
predictions containing only round-off error and no bias error. Thus for
g = 4 and h = 0 table XII shows the consequent zero bias for all com-
binations of values of e and T as indicated by the fact that the max-
imum absolute value of the bias is so listed for all combinations such
that 6 = 1, 32, and T = 0, 1, 2, 4, 8, 16.

In the cases of the fractional factorial experiments, the population
model (as shown by eq. (26)) need contain no more than nine first degree
terms for g = 5, 6, 7, and 8, for the case of T = 0. For this case,
the fitting of the equations of table IX to the 16 "observations" from
the fractional factorial experiments always results in zero bias as con-
firmed by the results from program MODEL in table XII.

For the cases of h > 0 (the fractional factorial experiments) and
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for t 1 1 (the presence of higher than first degree terms in the popula-
tion model of equation (26)), the maximum absolute values of bias in
table XII were always greater than zero. Furthermore the.bias values
were always quite large in comparison with the largest population values

for all values of T > 1. (The largest bias values were always less than
20 percent of the largest population values for T = 1 but were always

larger than 20 percent of the largest population values for T > 1 for
the values of 0 = 1 and 0 = 32 as listed in table XII.) Based on
these observations of very large bias with T.> 1, the consideration of
optimal decision procedure strategies (mp, ap, af) will be mainly limited
to the conditions of T = 0 and T = 1.

Strategy Options

The conceptually simplest strategy is to do no deletion. Then no
mean squares are initially available for a test statistic and this fact
and the associated strategy will be symbolized by writing mp = 0. Con-
sistent with such a strategy, there will be no mean squares tested for
pooling which is represented by ap = 1.0 and none can be judged insig-
nificant which is represented by af = 1.0.

The choice of just the smallest mean square as the denominator of
the test statistic is represented by mp = 1, and subsequent pooling and
significance tests are represented by ap < 1 and af < 1 as discussed
by Holms and Berrettoni (1969).

Consider the situation where t treatments have been used to pro-
duce t observations and there are therefore t degrees of freedom to
be partitioned between single degree of freedom estimates of model param-
eters and the degrees of freedom for the denominator of the test statis-
tic at the start of the decision procedure. If the data analyst does not
have prior information on the complexity required of the model, the wise
strategy would seem to consist of starting with the maximum possible num-
ber of degrees of freedom for the model and therefore with the minimum
possible number of degrees of freedom for the test statistic, namely,
use mp = 1. The use of ap < 1 will then permit the denominator of the
test statistic to be augmented with additional degrees of freedom thus
increasing its sensitivity. Based on this line of reasoning, no investi-
gations with POOLES were run with mp > 1.

The combinations of a and af available for investigation are
listed in table XI. Not al of these combinations were investigated with

ne = 1000 because some preliminary work with ne = 10 had suggested
that for values of 0 > 1 a strategy becomes ineffective if both (1) a
very large value of ap is used to severely limit the number of degrees
of freedom for the test statistic and if (2) this is followed with a very
stringent final test of significance as called for by a very small value
of af. Consistent with this concept, the values of af were mainly
limited to af = ap/10 with the exceptions occurring for 6 : 1.
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Strategies for which ap and af are both large will be called

agressive strategies. They tend to retain most of the original terms in

the model. Strategies for which a and af are both small will be

called defensive strategies. They gave strong tendencies to discard

terms. The intermediate strategies where ap is large and af is small

will be called moderate strategies. They tend to pool a relatively small

number of terms into the denominator of the test statistic and because of

the ordering of the terms by absolute magnitudes, the denominator remains

fairly small, and so the final test at level af is a relatively sensi-

tive test, and not as defensive as it would be if ap had been small for

the same tf.

Optimal Strategies

Illustrative output from POOLES is shown by appendix C. Similar out-
puts for many strategies (mp, ap, af) were scanned to find the strategy,

giving the smallest value of eiax (eq. (31)) for given values of g, 6,
and T. Results are shown by table XIII together with associated values

of V()max (eq. (35)). The resulting values of max for large 6
and T = 0 can be compared with expected values. If the terms in the
population model are much larger than the variance error, and if in the
population model (eq. (26)), T = 0, then the number of terms that should
be retained in the population model is g + 1. With a2 = 1 and with
g + 1 terms estimated from 16 observations the total expectation of
error variance for the prediction based on g + 1 independently esti-
mated terms is

E(6 2 ) = (g + 1)/16

From the preceding equation and from table XIII, the values of E(e2 ) and
-2emax for e = 32, T = 0, for the several values of g were as follows:

g (g + 1)/1 6  ema x (e = 32,
T = 0)

4 0.3125 0.3447
5 .375 .4177
6 .4375 .5038
7 .500 .5745
8 .5625 .6793

Some of the optimal strategies of table XIII for g > 4 are seen to
be quite defensive for large T even at the larger values of 6, where
the variance error is comparatively small. The question arises as to why
a defensive strategy would be employed in the presence of large bias and
relatively small variance error. The population model surface was fairly
complex as suggested by equation (26) and a maximum point was located at

6k = -1, 1, -1, -1, . . ., but that point was not one of the observation
points of the fractional factorial experiments. The irregular shape of
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the population model could cause relatively large magnitude coefficients

of the higher order terms of the fitted models to be retained, which

would bring predicted values close to the population values for those

cases where predictions were being made at points of the design where

"observations" had been recorded. For the points of the space correspond-
ing to fractions of the experiment not performed, the predictions could

contain very large errors due to such high order terms. For these pre-
dictions, the errors are reduced by the deletion of such terms and this

is why the optimal strategies of table XIII were highly defensive (used
small values of cp and af) for h > 0 when both 6 was large and

T was >1.0.

Aside from questions arising from T > 1 two questions that might

be asked are: "Under what conditions are some of the (mp, ap, af) strat-

egies optimal?" and "Is there some particular strategy (mp, a , af) that
is widely useful?" An attempt to exhibit an answer to these questions is

given in table XIV. It lists ap and af as row and column headings
and lists the parameter values g and 0 as tabular entries. Results

for the purely first degree population model (T = 0) are shown by
table XIV(a) and results in the presence of a small amount of surface

curvature (T = 1) are shown by table XIV(b). These results show that for

c = 0 and 6 small (6 < 4.0) the strategy (mp,.ap, af) = (1, 0.75, 0.10)
is a widely useful strategy, but that for T = 0 and-large 0, the opti-

mal strategy most often used ap = af, with decreasing values of a and
cf for increasing values of 0. In comparison with these results Lor
T = 0, table XIV(b) showed that relatively larger values of cp were
optimal for T = 1. (Large values of ap tend to inhibit the pooling
of mean squares into the denominator of the test statistic, which was
apparently beneficial when the bias risk was increased by going from

= 0.0 to T = 1.0).

The strategy (mp, ap, af) = (1, 0.75, 0.10) was suggested as a
widely useful strategy, particularly for those values of e
(1.0 ,e : 4.0) where the relative influence of the variance error would
be moderate and for the value of T (T = 0.0) where the bias error would
be absent. Other values of 0 and r (table XIV) had resulted in other
strategies being optimal. These results raise the question of: "Just
how fast does the mean square prediction error and its variance change
when the values of ap and af are other than optimal?"

Some parameter values of g and e requiring relatively extreme
values of m 3, a , and af are designated by the footnoted values in
table XIV. How ast the mean square prediction error and its variance
changes when the value of ap and af, are other than optimal for these
footnoted cases of g and 0 are exhibited by table XV. (Some values
of g and 8 having less extreme values of a p and af as optimal
strategies are also exhibited in table XV.) The cases exhibited in
table XV are limited to the low bias cases of T 1 1.0. The values of
emax  that identify optimal values of ap and af are indicated by
solid line rectangles. For comparison, the values of e2ax associated
with the widely optimal strategy of (mp, cp, af) = (1, 0.75, 0.10) are
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identified by dashed line rectangles. One conclusion that is evidenced
by table XV, is that the values of 2ax and V(-2)max always increase

very slowly from the optimal values of up and af for the more agres-
sive strategies (larger values of p and cf). On the other hand (see

particularly tables XV(c) and (g)), -2max  and V(- 2 )max increase quite
rapidly for strategies that are too defensive (values of up and af
that are smaller than optimal).

These observations suggest that the use of a moderate strategy when
an aggressive strategy is optimal is not too serious - the differences
are mainly functions of variance error. On the other hand the use of a
defensive strategy when it is not optimal (as in some cases of large bias)
can be disastrous.

The overall conclusions from the results exhibited by tables XIII,
XIV, and XV seem to be that chain pooling with 16 orthogonal estimates of
regression coefficients with no estimate of pure error should be done
with the strategy of (mp p,p, ) = (1, 0.75, 0.10). Such a strategy is
a moderate strategy tending to retain many of the terms, if many terms
are needed. If, with such a strategy, many of the terms are rejected,
the true situation may be concluded to be one where the underlying popu-
lation response surface is relatively simple. In such a situation, the
fitted equation may be used (1) for data smoothing (for computing pre-
dicted values at points of the space that gave the observed values),
(2) for interpolation (for computing predicted values at points interior
to the space spanned by the experiment, and (3) for extrapolation (for
computing predicted values at points exterior to the space of the experi-
ment). Of course - as is well known for extrapolations - even if the bias
error is small, the variance error rises very rapidly with the distance
of the predicted points from the space spanned by the observed points).

If on the other hand, the strategy (mp, ap, af) = (1, 0.75, 0.10)
leads to the retention of a fairly complex model equation (one with sev-
eral terms of higher than first degree) then the use of a more defensive
strategy might result in an equation with less bias when used for inter-
polation or extrapolation, but the prediction errors would be large in
any case (as shown by table XIII for g > 4 and t > 1). In these cir-
cumstances, the reasonable conclusion would seem to be that the reduced
model obtained with (mp, ap, af) = (1, 0.75, 0.10) is satisfactory for
data smoothing at the treatment points, but that more experimenting must
be done (such as the performance of the composite experiments of Box and
Hunter (1957)) if any interpolation is to be done.

CONCLUDING REMARKS

Model fitting procedures were investigated for the types and sizes
of experiments that are appropriate to empirical materials optimization
studies. The two-level, fractional-factorial, fixed effects experiments
are often appropriate to such purposes, and they provide the highly de-
sirable orthogonal estimates of the model parameters. Chain pooling is
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an appropriate method of parameter estimation and selection for such ex-
periments.

For the cases of nonorthogonal experiments, the subject of principal
components regression was examined and was found to provide a suitable
procedure for making the results of such experiments amenable to the
methods of chain pooling.

In empirical optimum seeking (as in materials optimization) the cri-
terion for model parameter estimation and selection should be the minimi-
zation of prediction error. In the Monte Carlo study performed to find
minimum prediction error strategies when chain pooling methods are used
for model selection, simulations were performed using population models
intended to represent response surface applications. The results led to
the following recommendations:

1. Use the strategy (mp, fap, f) = (1, 0.75, 0.10).

2. If many terms are deleted - if only a few terms of higher than
first degree are retained - use the reduced model for data smoothing,
interpolation, and limited extrapolation.

3. If only a few terms are deleted - if more than a few terms of
higher than first degree are retained - use the reduced model for data
smoothing only. Additional observations are needed for predictions at
points other than those already observed.
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APPENDIX A

SYMBOLS

FORTRAN Mathematical
symbol

I i Subscript on treatments

IT t Number of treatments

J j Subscript on ordered mean squares

K k Subscript on independent variables

KG g Number of independent variables

L R Subscript on parameter 6

LTH z6 Number of values of e

M m Subscript on parameter T

MTAU m T  Number of values of T

N n Subscript on experiments

NE ne Number of experiments

MP mp Number of mean squares pooled initially

LGMH g-h Experiment contains 2
g -h  treatments

PHI k Exponential parameters, k = 1, . ., g

PSI lk First degree parameters, k =1, . ., g

THETA z Scale parameters, Z = i, ., R1

TAU T m Exponential parameter, m = 1, ., mT

YMU 1itm Population mean for ith treatment, kth value
of 6Z and mth value of Tm

Xik Value of kth independent variable at ith treat-
ment. For two level fractional factorial ex-
periments; at its upper level, xik = 1; at
its lower level, xik = -1.

a Nominal significance level of preliminary testP
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FORTRAN Mathematical
name symbol

af Nominal significance level of final test

KP Column number of U. table associated with
specified cp

KF Column number of Uj table associated with
specified af
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APPENDIX B

PROGRAM POOLES

c
c I.- D- -CLAPAT41.- NSr Cl 'NSTANTSv POPULATICN MEANS9 AND STPATEGY

c
CIMENSION PEMAPKA14)p ALPHA(II)i TB(64tlO)p PHI(8)1

IPSI(B), 7H-Td(6), TAU(6)t YMU(128,6,6)t PN(64)t INW64)? Z(64)v

2E R SO( 12816i(j) r EP SO SQ( 128 t616) i r- k SQV X(6 6), AVERS W616),

3VE SWNIX (6,6), AV Vc SQ(60 tv) I DEL ( 8)
C DMM9,"l KK t Y013 S (2 56) t B ( 2 5 6)
LATA (ALPHA( I), 1= 1, 11)/0. 001 t0*002 10.005 v0*01t 1. 0251,0.051 0.10,

1'-,, 25YD -509 0.7!5, 1. C/
UAT A ( (TB( It J ), J= It 10) 1 =1 p24) /0.0, *) 00 t)-0 "003 00190-193909')-

li( -,, t2- 300,0,1-999ti9il-99997tlog998621*9991711-996R7tlo9877tl*923,1
2- 70611-382,2. 9976,2*9960,2*9904,Zo 98',,19,2*951 t --904,2*806,2*527t2-0

3ibyl.68313.976,3-962t3-925t3o87Dt3o76Ot3-625t3o4l2,29949,2*395tl69
4f,1,4-887,4.845,4.758,4.65t4.44,4-2it3*89t3*287t2-658t2-l84t5.74,5.

!)63t5-46y5o3l,4-99,4-68,4.28,3-57t2-893t2-371,6.51,6*33t6-Ili5*87v5
6946i5o')9t4-61,3-83r3*llr2.54,7*20,6996t6-65t6-35t5o88t5-4414*9lt4o
7C6,3.?9,2.69,7.8it-7-52,7-lOt6o78t6-26v5e75t5o l7t4.27t3-45,2*82,8*3

84t8.Olt7-53t7.l7t6e59,6oO3,5-41,4-4513.60,2.95,8-8298.44,1.95t7.53
9,bo89,o-28,5*t)1,4-u2t3*74t3*07t9-26,8-84t8o33tl*87,7*13,6*5r)t5.8l,
tk4o77,3987,3*17,c?.(,,79 )*ZI98-68v8ol697-37,6-71,5-99t4.92y3.99t3*27il
BO*05Y'9*55v6,-9598-42,7*59,6-9lt6-15t5oO5t4elO,3*37tlO-40,9-86,9-20,
C8*4:j6t 7 *-19t 7*071 6*30t 5. 17,4.20,3*46tI0,72tl0, 14t9*43t8*83t7*96v 7.23

D,0*44,5.29,4.3013-55,11.01,10.40,9-64,9.OOtB-i2t7o38t6.57,5*40,4*3
E-9,3-6-3t11-28PIO-6499-84,";-17t8.28,7o5296o69,5*50,4*48,3*70,11*53,1
FC,.86,10-03,9.3418.43,7.65#6.8lt5*6O,4.56t3-77tll*76til-07,13*22,9-

C-',51,c3.58,7.-18,6-921506914*64,3*84,11-98,11-28pl ')-40,9*67PB*72t7.907

H7*03,5978t4-71,3*90tlZ-19pl1*48,1-3*58t9-83,8.86t8-02,7-13#5-87t4-7
18,3*96,l2o39111-68tlO*76t9e99,8*99r8#13,7o23t5*95t4*85,4*02tl2.58I
JII*87il')*93,1 ol4,9ol2,8-24,7.33,6.03,4.92t4.08/
DATA ((TB(ItJ),J=1,10)vl=25,47)/12076,12-05,11,10,10-29,9e23,8.34t
!7o42,6*11,4.98t4*14tl2o93PI2*22tll*26tlO-43,9.34t8*44,7-5lp6-l8t5o
2'1414-Igti3-)9,12938,IL.41,10.56, 44.44,8954t7-6Oi6*251591,,*),4-24,13-2

34,12-53,11-55,10*68,9@54t8o63t7-68t6*3295*16,4.3Otl3.39,12-68,11-6
48,10.78,9-64,8.7217.76t6.38,5*22t4-35tl3-53,12*82,11*80,10*88,9*74
5,8-8lt7-83t6.44,592814*40,13-67liZ.96,11.91,10-98t9.83,8.89,7-90,6
6*50,5933t4*45tl3-8Otl3*09,12.Olll-O7o9e';1,8*97#7*97,6.5615-38,4-5

70ti3st 3,13.2ll2.lOll.l6t9-99t9o94,8*04,6*62#5*43t4*54tl4-05,13#3
82,12-19,11*25il',)*C7,9011,8-11,6.68,5.48,4.58,14.l7tl3.43,12*27tll.
934,10*15,9,,IBY8-17t6*74t5-53,4*62,14-29913-53912*3591lo43VIO*22.,99
A25,8.23,6. 80, 5. 58,4. 669 l4o4l, 13-63 124,439 11* 51 10s 29p9- 319 8.2996*8

B5,5-63t4o7'^)914.53,13*73,12.51,11.59910.36,9.37t8.35,6.90,5*67,4e74
Ctl4o64tl3.82tlZ*59,11*67910*43,9*4398*41,6o95,5*7114-78,14.75,13.9
[)1,12967,llo75,10.50,9-49,8.46,6o9995*7594o82114*85,14-OOtl2o75tll.
E83,1')o57,9-55,8*5lt7-03,5*7994,66,14.95,14.C)9tiZ.83911,90,10,64t9.
F6lt8.56,7.O7t5.8314*90j,15-05PI4*17912990,11997,10970,9967t8-6117.1
Gl,5*87,4*94tl5ol5,14.25,12.97912*04tlO*7t,,9*72,8-66,7*15t5*9lt4.98
Ht15-Z4tl4-33,.13905912elltll*82,9-77,8*7197*19,5*'95,5*01915*33tl4o4
lOtl3ol2tl2-18tlO.88tg.82t8.76t7923,5.99,5*04,15.42-,14*47tl3*l9,l2o
J, 5, 10994, 9*879 898 1, 7027,6003, 5-07/
O-ATA((TB(IPJ)tJ:--IP10),1=48,64)/15*50,14*54pl3o26tlZ*32tll*00#9*'92,



18.85,7.id,6.07,5.10,1t5.58,14.6C,13032,12.38,11.36,9.97,8.89,7.35,6

35.73,14.72,l3e44912.50,Li.-16,1'.07,8.97,7.43,6.17,5.19,15.80,14.79
4,13.5),12.56,11.21,10.1l2,9.31,7.47,6.20,5.22,15.87,14.85,13.5b,12o

85.34, 169.11 r15.10t 13.77,12.83t,11.44t 10.330-.21, 7-67,6-35,5.37, 16.17
9,15.16,13.82,12.,88,LI.48,1'.*37,9925,7.70,)6.38,5.40,16.23,15.2213.
A687,12.93,L1152,1D.41,9.29,7.73,6.41,5.43,16.29,15.28,l3.92,12.97,1
L. 56, 0.45 ,9. 33, 7.76,6.44, 5.46 ,I6.34, 15.34,13. 9? 13.0)1,11.60, 10.49
C,9.37,7.79,6.47,5.48,16.39,15o40),14.0'2913.05,11.64,1).53,9.41,7.82
0,6.50,y5.50, 16.44, 15-46b,L4* 0 61 13*09,11*67, 10o 57,945t7*85,6.53,5. 52

s0.09, 0.0, 0.0, 0.0 0.0,0.0 ,0. 0, 0 .010.0,0.00/
c

PEAD(5,800) (PEMAFK( I) ,I=l,14)

FEADI(5,824) LGMH, Nr-
IT= 2**LGMH
ITMI= IT-1
ITM2 = IT-2
FIT= IT
FNF= N!E
IF (NE*E4~.0) FN'E 1.0
VNFMI = FE- 1.0
READ (5,825) KG,( PSI(K),K=I,KG)
WPITE (6,842) (PS1(K), KJ,KGi)
RE AO (5,825) KG,(PHI(K),K=lKG)
VRPITF (6,843) (PHI(K), K=1,KG)
FEAD ( ,825) KG,(OEL(K), K=t,KG)
V;F ITE (6,844) (PEL(K), K=IKG)
PE'n(5,825) LTH, (THE-TA(L), L=I,LT-)
PEbV(5,825) MTAU, (TAU(M), M=1,MTAU)
IP= 2*4KG
FIP =IP
IPPL= IP + I
F-FNSIP = FNE*FI P
FEM11P = FNFMI * FTP

Or) 49 M=1,MTAU
()0 48 L=1,LTH
D0 20 1 = 1, IP
A= 1.0
C = 0.')
00 15 K=1,KG
KM1= K-1
J= 2**KMI
AX = NNI I-I),j)
XI = 2*IARS(KM1,AX)-1
DEBUG 1, K, XI
A= A+PSI(K)*XI
C =C + PHI(K)*(XI-DEL(K))**2

15 CONTINUE
YMU(I,LM) = THETA(L)*(A*TAU(M)*FXP(-C))
DEB3UG I, L, M, YMU(I,LtM)

210 CONTINUE
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48 CONTINUE
4Y CONTINUE

50 rEAD (5,824) MP,KP,KF
MPPI = MP+1
CALL SAND (XS)
DO3 99 M=1,M T AU
D0 98 L=1,LTH
PO 97 I=1,IP
EFSQ(IL,M) =  3.0
"R SUS(I,L,M)= 00.

97 CONTINUE
98 CONTINUE
99 CONTINUE

C
C 2.- SIMULATIONS AND MODEL FITTING

C
DC 699 N=1,NF
IF (NE.EQ.9) GO TO 233
1'0 213 I=1,IT

CALL RANO(RN(I))
DEBUG I, PN(I)

213 CONTINUE
DO 215 I=1,IT,2
E= SQPT(-Z.*0ALOG(RN(I)))
D= 6.2831853PN(I +1)
FN(I)= _*COS(D)
DEBUG N( I)
FN(I+1)= E*SIN(D)
DEBUG RN(I+1)

215 CONTINUE
GO TO 201

203 00 209 I=1,IT
FN(!) = 0.0

209 CONTINUE
201 DO 690 M=1,MTAU

DO 680 L=I,LTH
KK= LGMH
!F(KG .EQ. 4) GO TO 204

IF(KG .EQ. 5) GO TO 205

IF(KG .EQ. 6) GO TO 236
IF(KG .EQ. 7) GO TO 207

IF(KG .EQ. 8) GO TO 208

C
204 CO 214 I=1,IT

YOBS(I)= YMU(I,L,M) +RN(I)

DEBUG YCBS (1)
214 CONTINUE

CALL YATES
GO TO 300

C
205 YOBS( 1) = YMU( 1,L,M)+RN( 1)

YOBS( 2) = YMU( 2,LM)+RN( 2)

YOBS( 3) = YMU(19,L,M)+RN( 3)

YOBS( 4) = YMU(20,L,M)+RN( 4)

YOBS( 5) = YMU(1,L.,M)+RN( 5)
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YOBS( 6) = YMU(22,LM)+RN( 6)
YOBS( 7) = YMU( 7,L,M)+RN( 7)

YOBS( 8) = YMU( 8,L,M)+RN( 8)

YOBS( 9) = YMU(25,LM)+RN( 9)

YORS(10) = YMU(26,L,M)+RN10O)

Y BS( 11) =  YMU(11,L,M)+RN(11)

YORSIL2) = YMU(12,L,M)+RN(12)

YOBS(13) = YMU(13,LM)+RN(13)
YOBS(14) = YMU(14,L,M)+RN(14)

YOBS(15) = YMU(31,LM)+RN(15)

YOBS( 16) = YMU(32,L,M)+RN(16)

00 250 I=1lIT
DEBUG YOBSII)

250 CONTINUE
CALL YATES
GO TO 300

C
206 YOBS( 1) = YMU( l,LM)+RN( 1)

YOBS( 2) = YMU(34,LM)+RNI 2)

YOBS( 3) = YMU(19,L M)+RN( 3)

YOBS( 4) = YMU(52,LM)+RN( 4)

YOBS( 5) = YMU(53,LM)+PNt 5)

YOBS( 6) = YMU(22,L,M)+RN( 6)

YOBS( 7) = YMU(39,L M)+RN( 7)

YOBS( 8) = YMU( 8,LM)+RN( 8)

YOBS( 9) = YMU(57,L,M)+RN( 9)

YOBS(1:) = YMU(26,L,M)+RN(10)

YOBS(11) = YMU(43L, M)+RN(11)

YOBS(12) = YMU(12,L,M)+RN(12)
YOBS(13) = YMU(13,L,M)+RN(13)

YOBS(14) = YMU(46,L,M)+RN(14)

YOBS(15) = YMU(31,L,M)+RN(15)

YOBS(16) = YMU(64,LtM)+RN(16)

DO 260 I=1,IT
DEBUG YOBS(U)

260 CONTINUE
CALL YATES

GO TO 300

C
207 YOBS( 1) = YMU( 1,LM)+RN( 1)

YOBS( 2) = YMU( 98,L,M)+RN( 2)

YOBS( 3) = YMU( 83,L,M)+RN( 3)

YOBS( 4) = YMU( 52,LM)+RN( 4)

YOBS( 5) = YMU( 53,LM)+RN( 5)

YOBS( 6) = YMU( 86,L,M)+RN( 6)

YOBS( 7) = YMU(103,L,MI+RN( 7)

YOBS( 8) = YMU( 8,L,M)+RN( 8)

YOBS( 9) = YMU(121,LM)+RN( 9)

YOBS(10) = YMU( 26,L,M)+RN(10)

YOBS(11) = YMU( 43,L,M)+RN( 11)

YOBS(12) = YMU( 76,L,M)+RN(12)

YOBS(13) = YMU( 77,L,M)+RN(13)

YOBS(14) = YMU( 46,L,M)+RN(14)

YOBS(15) = YMU( 31,L,M)+RN(15)

YOBS(16) = YMU(128,L,M)+RN(16)
DO 270 I=1,IT
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DEBUG YOBS(I)
270 CONTINUE

CALL YATES
GO TO 300

C
208 YOBS( 1) = YMU( 1,L,M)+RN( 1)

YOBS( 2) = YMU(226,LM)4-RN 2)
YOBS( 3) = YMU(211,LM)+RN( 3)
YOBS( 4) = YMU( 52,LM)+RN( 4)
YOBS( 5) = YMU(181,LM)+RN( 5)
YOBS( 6) = YMU( 86,L,M)+RN( 6)
YOBS( 7) = YMU(103,L,M)+RN( 7)
YOBS( 8) = YMU(136,L 1M)+RN( 8)
YOBS( 9) = YMU(121tLM)+RN( 9)
YOBS(1)) = YMU(154,LtM)+RN(L0)
YOS(11) = YMU(171,LM)+RN(11)
YOBS1l2) = YMU( 76,LM)+RN(12)
YOBS(13) = YMU(205,LM)+RN(13)
YOBS(14) = YMU( 46,LtM)+RN(14)
YOBS(15) = YMU( 31,LM)+RN(15)
YOBS(16) = YMU(256,LPM)+RN(16)
DO 280 I=L,IT
DEBUG YOBS(I)

280 COFITINUE
CALL YATES
GO TO 330

C
C 3.- CONSTRUCTION AND ORDERING CF MEAN SQUARES
C

300 DO 309 I=1,IT

IND(1)= I
Z(1)= B( I+1)*B( I+1)/FIT
(1)= B(1) / FIT

DEBUG B(I)
309 CONTINUE

IF (MP.EQ.O) GO TO 500
C

D00 313 J=L,ITM2
TEST= Z(ITM1)
IN= ITML
DO 312 NA=J,ITM2
IF(TEST-Z(NA)) 312,312,311

311 TEST = Z(NA)
IN= NA

312 CONTINUE
ITEM= IND( IN)
TEM= Z(IN)
IND(IN)= IND(J)
Z(IN)= Z(J)
IND(J)= ITEM
Z(J) = TEM
DEBUG IND(J),Z(J),B(ITEM)

313 CONTINUE
DEBUG IND(15),Z(15),B(15)

C
C 4.- DELETION OF TERMS
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C
JN= 'MPP
TEM= 3.0
DO 415 J=1,MP
INOX = IND(J)+1
B(INOX)= 0.0
TEM= TEM + Z(J)
DEBUG JN, INDX,B(INDX), TEM

415 CONTINUE
IF (KF.EQ.11) GO TO 533

DO 419 J=MPPL,ITMI
FJN = JN

TEST = FJN*ZIJ)/(TEM+Z(J))
IF (KP.EQ.11) GO TO 417

IF (TEST-TB(JN,KP)) 416,416,417

416 TEM = TEM + Z(J)

INDX = IND(JI)+
B(INDX) = 0.0
JN = JN+1

DEBUG JN,INDXB(INDX),TEM
GO TO 419

417 IF(TEST - TB(JN,KF)) 418,418,420

418 INDX = IND(J)+1
B(INDX) = 0.0

DEBUG INDX, B(INDX),TFM

419 CONTINUE
JETA = ITM1

GO TO 533

420 JETA = J-1
00 421 J=JETA,IT
INOX = IND(J)+1
DEBUG INOX, B(INDX)

421 CONTINUE
C
C 5.- PREDICTIONS

C
50' KK = KG

DEBUG JETA
IF (KG .EQ. 4) GO TO 540

IF (KG *FQ. 5) GO TO 550

IF (KG *EQ. 61 GO TO 560
IF (KG .EQ* 7) GO TO 570

IF (KG *EQ. 8) GO TO 580

540 00 546 I=1lIP
IPPlMI = IPPI-I

YOBS(I) = B(IPPIMI)

DEBUG YOBS(I)
546 CONTINUE

CALL YATES
GO TO 600

550 DO 551 1=1,20

551 YOBS(I) = 0.0
YOBS(13) = 8114)
YOBS(14) B= (13)
YOBS(15) = 8(16)
YOBS(16) = 8(15)
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DO 552 I=2132
IPPlMI = 33-I

552 YOBS(I) = B(IPPIMI)
DO 557 I=l,IP
DEBUG YOBS(I)

557 CONTINUE
CALL YATES
GO TO 600

C
560 DO 561 I=1,52
561 YOBSI I) = 0.0

YOBS(31) = B(13)
YO8S(32) = B(14)

YOBS(47) = 8(16)
YOBS(48) = 8(15)

DO 562 I=53,64
IPPIMI = 65-I

562 YOBS(I) = B(IPPLMI)
00 567 =11,IP
DEBUG YOBS(I)

567 CONTINUE
CALL YATES
GO TO 600

C
570 00 571 I=1,117
571 YOBS(1) = 0.0

YOBS(64) = B(12)
YOBS(95) = B(13)
YO8S(96) = B(14)
YOBS(111)= B(16)

YOBS(112)= 8(15)

DO 572 1=118,128
IPPIMI = 129-I

572 YOBS(I) = B(IPPIMI)
00 577 I=1,IP
DEBUG YOBS (I)

577 CONTINUE
CALL YATES
GO TO 600

580 DO 581 I=1,245

581 YOBS(I) = 0.0
.YOBS(128) = 8(8)
YOBS(192) = B(12)
YOBS(223) = 8(13)
YOBS(224) = 8(14)
YOBS(239) = B(16)
YOBS(240) = 8(15)
DO 582 1=246,256
IPPIMI = 257-I

582 YOBS(I) = B(IPP1MI)
YOBS(249) = 0.0
DO 587 I=1,IP
DEBUG YOBS(I)

587 CONTINUE
CALL YATES
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GO TO 600
C
C 6.- ACCUMULtTION OF ERRORS
C

603 DO 639 I=1,IP
IPPIMI = IPPI-I
DEBUG 3(IPPIMI)
TEM= (B(IPPIMI) - YMU(I,LM))**2
ERSQ(I,L,M) = ERSQ(I,L,M) + TEP
ERSQSW(I,L,M)= ERSUSQ(ILM) + TEM**2
DEBUG M,L,I,EP.RSQ(I,L,M)

609 CONTINUE
680 CONTINUE
690 CONTINUE

IF (NE .EQ. 0) GO TO 730
699 CONTINUE

C
C 7*- DETERMINATION OF MAXIMUM AND MFAN SQUARED ERRORS

C
C

700 DO 790 M=1,MTAU
00 780 L=1,LTH
C = 0.30
O 3.3
E= 0.0
F= 0.)3
00 750 I=I,IP
C = AMAX1(C,ERSQ(I,LtM))
D = D + ERSQ(I,LtM)
TEM= ERSQSQ(ItL,M)- ((ERSQ(IL,M) )**2)/FNE
E = AMAX1(ETEM)
F = F + TEM

750 CONTINUE
ERSQMX(LM) = C/FNE
AVEPRSQ(L,M) = D/FENBIP
IF (NE *EQ. 0) GO TO 780
VESQMX(LM)= E/FNEMI
AVVESQ(L,M)= F/FEMIIP
DEBUG ERSUMX(LM) AVERSQ(LM),VESQMX(LM)PAVVESQ(LM)

780 CONTINUE
790 CONTINUE

C 8*- OUTPUT
C

WRITE (6,830) ITNE,KGMPALPHA(KP),ALPHA(KF)
WRITE (6,832) (TAU(M),M=1,MTAU)
WRITE (6,833)
WRITE (6,831)
WRITE (6,834) (THETA(L),(ERSQMX(L,,IM=1MTAU) L=1,LTH)

WRITE (6,835)
WRITE (6,834) (THETA(L),(AVERSQ(LM),M=1,MTAU),L=1,LTH)
WRITE (6,836)
WRITE (6,834) (THETA(Lt,(VESQMX(LM),M=.1,MTAU), L=1,LTH)
WRITE(6,837)
wRITE(6,834) (THETA(L),(AVVESQ(L,M), =1,MTAU), L=,LTH)
GO TO 50



830 FORMAT (13AO,A2)
801 FORMAT (1Hl,1OX,13A6,A2//)
824 FORMAT (315)
825 FOPMAT ( 15,8F5.0)
830 FORMAT (1H1,3X,4HIT =15,5X,4HNE =I5,5X,4HKG =15,6X,4HMP =15,5X,

1,HALPHAP =F6.3,5Xt8HALPHAF =F6.3//)
831 FORMAT ( HO,20X,6HERSQMX//)
832 FORMAT (1HO,4HTAU=6F13.2//)
833 FORMAT (LH,),5HTHETA//)
834 FORMAT (Fb.2,bE14.4)
835 FORMAT (IH0,20X,b6HAVERSQ//)
836 FORMAT (IH0,20X,6HVESQMX//)
837 FORMAT ( H3,20X,6HAVVESQ//)
842 FORMA (1HO,4HPSI=8E14.4)
843 FORMAT ( lH),4HPHI=8EL4.4)
844 FOPMAT llHO,4HDEL=814.4)

ENO
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SUBROUTINE YATES
C
C 9*- YATES METHOD SUBROUTINE
C

COMMON KK,Y(256),B(256)
II = 2**KK
IIDB2 = 11/2
KKMI = KK-1

DO 9)8 K=IKKM1
DO 906 1=1,11,Z
1P102 = (1+1)/2
B( IP1i2) = Y(I+1)+Y( I)
LL = IP1D2+IIDBZ

906 B(LL) = Y(1+1)-Y(I)
DO 937 1=1, I

907 Y(I) = B(I)
908 CONTINUE

DO 909 I=1,II,2
IPID2 = (1+1)/2
B(IP1D2) = Y(I+1)+Y(I)
LL = !PlD2+IIDB2
B(LL) = YII+1)-Y(I)

909 CON'.TINUE
RETURN
END



APPENDIX C

ILLUSTRATIVE OUTPUT - POOLES

0TAU= J) 050 .100 L.50 2.00 2.50

THE-TA

ERSQMX

.50 0.1673E+01 0.1673E+1 9.1673E+01 0.1673E+01 0.1673E+01 r.1673E+01
0.25 3.673 +'J 0.1673E+01 0.1673E+01 0.673E+O1 0.1673E+01 0.1673E+01
0.13 0.1673E+01 C.1673E+01 0.1673E+01 0.1673E601 0.1673E+01 0.1673c+-1

AVEPSQ

0.50 0.8256F+00 0.8256!+00 0.8256E+00 00.8256E0+00 0.8256+00 .8256+00 082 00
0.25 .d8256+)) 0.8256E+30 *.8256E +30 0.8256E+00 0.8256E+00 0.8256E+00
0.13 0.8256E+03 0.8256E+0 0*8256E+00 0.8256E+00 0.82568+00 0.8256E+00

VESQMX

0.50 0.3585+01- 0.3585E+31 0.3585E+01 0.3585E+O1 0.3585E+01 0.3585E+01
0.25 3.35d5E+I1 0.3585E+01 0.3585E+01 0.3585E+01 0.3585E+01 0.35855E+01
0.13 3.3585E+31 0.3585E[+1 0.3585F+01 3.3585E+31 0.3585-+1 n.35F5E+01

AVVESQ

?50 ?.1121E+)" 0. 1121E+31 0 1121E+01 0*1121E+)1 0. 112 LE +01 0.1121E +I) 1
0.25 0. LZIE+01 OI021E+1+01 0.1121E+01 0.1121E+01 0.1121E+/I
0.13 3.1121-+01 0.1121E+01 1 0.1121E+01 0.1121E+1 0.111ZE+l
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APPENDIX D

PROGRAM MODEL

c
loI- DECtAbaALONS ANO INPUT

011MENS1C'N fREMARK(14)9 PSI(8a. 4-,-Hi. THETA16I, TA&J(oJ*ALPHIA( il)t

CCJ't'ON KK. YOSS(2)619 F'(256)
DAIA tAP~lo~~l1*09*09*0#* veZ945010

aftITEI69801) ARFMARKLM)1=1914)
RFfACitl.fi4i LGM14o NE

FIT= IT
IRFAD t5sbiS) KGs(PS[(K)9K1.#KG)
wfITlE tt.842') (PSL4K). K=19KG)

READ (5.it~i) KGo4PHI(K)99z1vKG)

RFACQ 45,8251 KGotDft(A)v K31,(()

w9ITF lbof44) (OEL(K39 K=1,KG)

kFACI5.b251 ITli 4TH-EA(L)o . =A9LTH)
RFA~CtS*625) U4TAU* 4TAUD41o P L#MTAAU)

lp = l**K

1541= IP + I

r 2.- POCEL ANC FITTING
c

(00 49 t- - ITAIJ
DO 48 t=1,LTH
00 20 1=1.1p
A= 1.0
C z 0.0
oc 15 K=1.KG
KmlI 9-1
J= 2**KM1
AX = NctUI-l)qJ)
XI = 2*IARStKt~i.AXJ-l
A= A*PSI(i)*XI
C =C *PMK)XIDLK)*

15 CC6ITINUCE
Yf~tuU.L.MI u THFTA(L)*4A+TAU(A)*ExIf-C))
HIAS(I.L.M) -0.0

2cCEI CCT NUE
4f, CdJITINU~E
4Y CrC.7 t~t.
50D REAG (5.b24) #P*KP*KF

c
C So- PRELIC~i INS
c

00 690 Pz1.NTAU
D0 680 iL.L91Th



K4= LL;.41h
IFIXc, .EFC 4) GO TO 204
f F( K6 *EC. 5) 60 TO 205
&F(KG oFt~o 6) GU TO.2Cb
[IfKG *EC. 7) GO TO 2C7
ft-(KC, *EQ* k) GO TO 2C&b

204 DC 214 1=191T
Yrh~s41)= YD4(l0.L.p)

214 U'N I INUE
CALL YATES
00) 349 l=I.[T
411) = F~t )/FIT

34S r.0 hT INtiE
c

4K-KG
00 54h 1=1,[P
IPFIMI =IPI-1

YCOS4 z StIPPIML)
5i44 C1t5NNU

CALL VAIES
GcT TO &cc

c
205 YLOhS( 1) = V4U( 1.LoP)

YOPSt ;) = Yt'UA 2919M4)
Y0I8S( 3) = VMU(19,LoMb
Yrost 4) VI4U120,t..m)
YrISS( 5) VML4ite1.LM)
VYfifSd 6) V14&(2iqL.M)
Y08S( 7) YMU ( 7 91. 4 )
YO#PS( 8) =VMU( 8.Lv$)
YfiISt 9) YML(2!5.L.I4)
Y(ES(1O) VI.W(26oL*P)
Y41$si11) =ymbIi.L.em)

YOFI(2) VPL.4(12*L*NM)
YI8Sf 13 ) =Vm4&i(3.&..A4)
YOBS(14) VAW 149.9MN)
YOBS(15) =YMIJ131*LvM)
YOI4S( 16) VMUj(32.vL*#4)
CAtL VAWFS
Oil1 359 I=IapT
B3ill = BIIJ/FIT
Hlt#,( 1.LI'4) ;-(Bil

3 5 CU .I tIN UE
KK KG
01 1 l 1=190

551 YOIFS(1I 0.0
Y01OS(13) 6 (14)
YDFS(14) 841(3)
VCIIS(15) 04(16)
YOBS( 16) B415)
00 !'ii 1321.32
IPPIt4T 33-1

552 YOBs(f) = 8(ppIli1)
CALL YATES
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60J 76 6C0

2?0b YfOI 1) = VM41 1.1.5')
YIOBS( i ) = t((34vL *M)
YC S 1 3) = YMu(199LOM)
Y08 S4 4) VMU(52vL.14)
YOP S ( 5) YMU(t3oteP)
Y0~St 6) y4U(22vL1)
VO S4 1 ) YMU t3S L.M i
YfliS( 8 ) YMU(J SsLeMl
Yr]PS( 9) Y~sltl57*L.5i)
YOAS(10)= MtooV
Y09S( I I) =Y(4Ul43*L.5M)
Y08S(12?J YMU4J2*L,1A)
Y0bS413) =VMUU13.L.M)
YOPS( 14) z VMU(46vL.IP)

Y(8S(15) VMUj(31vL.AM)
Y 1H 6 b) = M1J(64vL9A)

CALL YATES
00 3614 1=1* T

H(J z ii(I)/iIT

6~ COO TLNUF

561 Yr.HS(1) =0.0

YCfkS(3;) B(14)
YOOS(47) 8(16)
YL3PS14&) =8415)

OrG 562 1=539t;4
IpplotN = 465-1

5k2 VOPS1I) z AIPPIMI)
CALL YAIES
(;O TO 600

20TJ YOBss I) = YmU( 1.L*M1
Y CAS ( 2) zYt4U( 9891..th)
YCI3S( 3) =YMU( 83,L*A)
YGSS( 4) =YMLI( 52*,#4
YaOSS 5) = MU( 539,M1)
YCBS( 6) z MU( 6.LM)
VOSS( '? J Y=U( 103,L.MI
YOSS( 8) = YI4UI 6,L , M)

YDkS 1 9) =VMU( 12 1 9L 9M)
YOFS( 10) = V1U( 26* L *1
Ya8S( 11) J = U( 43,L 901)
V08SI 12) z VOIU ( 16* L 9 )
YOSS( 131 = I4U( 711.9M4)

YO8S( 14) = YMLU1 4691 91M)
YOBS(15) = V4U( 31*L.M)
YOISS(1c) = PU( 128.L.M)
CALL YATES
00 379 [=)*IT



56

-41icC hl T I.111

5 11 YCIFS(I) 0.0

YCHS495) 8(3
YCFS(96) 8($14)

DO1 57) I=ii8.12d
IPFIMI =1r-

CALL YATES
tv(1 TO t60C

,?08 Y0i8SI I) = VMU 11t1)
YOISIt a = YMU(22boL.1m)
Y66S( 3) = YMU(i1I*L*4)
YLIIS4 4) Vt4(i 52*Lvt4)

Y08S4 6) =YIU 669L#M)
YOSS4 71 Yt4U(103oL,14)
YCOS( 8) V Ybt 136# 9M)
YOFS( 9) = YMO(121.*0)
YOOS(l0) = YMU(154*L.14)
Y06IStI&) = VMtlll,1L*M)
YCOS11) VM&J( 76.L41)
YO8S(t13) 2YMU(2059,LP)

Y(WS& 14) V YNJt 46vL*Mh)
Y0PStiS) z YMU( 31,L.M)
YoeSiU6i - YmiU56qL.m)
CALL YATES
001 38-i 1=1.11
AM'=) z ll l FIT

381i CIZIJNIJE
KK = KG
00 581 1=19;45

581 YOH.( i = C*O
YOPS(Ii8) =Bib~)
Y0 S( ii =h()
YCFSi223) = M13)

Y08S4239) = 6116)
YOPS(.?401 = MIS1)
D0 582 1=246.256

582 VD135~(l lPt1PPIMI)
YCASI 249) =0.0
CALL YATES
G6~ To 600

c
600 DO 609 1=1*[P

1PP141 = I1PPI-1
fHIASfI*.oPD) = 8IPP1141 )-Yf4UI*I.M)

60', CCtKT NtiF
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a c ri~ (OIttuE
69C CCNT INUF

WR~ITE fb9830) 17,NE:.KCMPALPhiA( I4P),ALPIA(,Kd:

WRiITE (6,838)

W 1 7iF (69832) (TAUfM),M~l#NrAU)

WRITE l6.8S41 )

I00 FORM~AT (13A6*A2J
801 FORMAT lglIvI0X.13A6*A2i/)
824 FOCRAT (315)
825 FOAMAT ((5,*61-5.0)
83C FORMAT 4IIHO93X94HIJ =15,5X*4HhE -I5v5Xv4HK6 -i1i,6Xt4HMP =15t,5XP

181-AL'HAtP =F6o3#tX,8HALPhAF -=f6e3//)
8,32 FO&aMAT I]-I.'HTAU6FI3*2//)
s3b iIFORMAT (IlhO.5SHTHETAIX1d-i[.3AoiJIYMt//)
839 FORMAT (11,09F490#14*6E)4.4)
94C FORMDAT (11-0,5HT1ETA.iXeiI3)I,4HIbLMII)
t41 FORiMAT (1i-0,5HTIETAIAXIH4,3X.4tIBLAS//)
842 FORMAAT (il-O.4HPSI=8FI4.4)
843 FORMAT 404P4I8E14*4)
844 FOMAT (IhO.4h-DEL8bE14*4)

EN r,
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SU6RfliTIN~F 'YATES

I

M(PI = KK-I
On 9C8 K=I*KKM41

[P1CE? = (1*1)12

hlp~ = P V(2I+I32 t
9OLLiA = (.-V)

tC *'C7 111
14O7 Y( ) = 841)
9Cfi CCT INUF

DO 9C9 1-1.11.2
[IC;~ = (1+1)12

LL = PCIDi
AU(L) 4e-Y1

490S CONFliNLE
RFElIiIRN
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TABLE I. - SAMPLE FRACTILES FOR ORDER STATISTICS
FROM SAMPLES OF SIZE g

= ,q i =1+g

j gg

4 5 6 7 8

1 0.200 0.167 0.143 0.125 0.111
2 .400 .333 .286 .250 .222
3 .600 .500 .429 .375 .333
4 .800 .667 .571 .500 .444
5 .833 .714 .625 .556
6 .857 .750 .667
7 .875 .778
8 .889



TABLE II. - VALUES OF k

k g

4 5 6 7 8

1 1.00 1.00 1.00 1.00 1.00
2 .65 .67 .72 .75 .76
3 .41 .45 .54 .58 .63
4 .20 .28 .39 .44 .47
5 .14 .26 .32 .37
6 .12 .20 .27
7 .10 .17
8 .07



TABLE III. - POINTS OF INFLECTION (EQ. (24))

k g

4 5 6 7 8

1 0.29 0.29 0.29 0.29 0.29
2 .12 .14 .17 .18 .19
3 -.10 -.05 .04 .07 .11
4 -. 58 -. 34 -. 13 -. 07 -. 03
5 -7.89 -.39 -.25 -.16
6 -1.04 -.58 -.36
7 -1'24 -.71
8 -1.67

-1 0 +1 X



TABLE IV. - GENERATORS OF EXPERIMENT PLANS

Full Defining contrast generators
replicate
estimable
contrasts

g 4 5 6 - 7 8
h 0 1 2 3 4

xo
Xl
X2
X1X2

x3
XX3
X2X3
X1 X2 X3  X1X2X3X8

X1 X4
X2 X4
X1 X2X4  X1 X2 X4 X7  X1 X2 X4 X7

X3X4
X1X3 X4  XX 3X4X6  X1X3X4 X6  X1X3X4X6

X2X3X4  X2X3X4X5  X2X3X4X5  X2X3X4X5  X2X3X4X5

X1X2X3X4



TABLE V. - DEFINING CONTRASTS

g

5 6 78

0 0 0Xo Xo Xo X0

X2X3X4 5  X2X3X4X 5  K2X3X4X5  X2X3XX45

xxxx xxxx xxxx
XlX3XX 6 X6X3X4K 6  X1XXX 6

X1X2X5X6 x1X2X5X6 X1X2 5 6

XX 2X 4 X 7  XK2X4X 7

x1357 I x1357

K2X367 23X6X7

X4 X5X6 X7  X4 X5 X6 X7

X1X2X 3X 8

X2X4X6X
8

X3X5X6X8

X3X4XTX
8

X2XX 5 7 8

XIX6X7X8

X1x 23X4X5X6X7X 8



TABLE VI i - LEVELS OF INDEPENDENT VARIABLES

X1  X2  X3  X4  X5  X6  X7  X8

-1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 1 1 1

-1 1 -1 -1 1 -1 1 1
1 1 -1 -1 1 1 -1 -1

-1 -1 1 -1 1 1 -1 1
1 -1 1 -1 1 -1 1 -1

-1 1 1 -1 -1 1 1 -1
1 1 i 1 -1 -1 -1 -1 1

-1 -1 -1 1 1 1 1 -1
1 -1 -1 1 1 -1 -1 1

-1 1 -1 1 -1 1 -1 1
1 1 - 1 -1 -1 1 -1

-1 -1 1 1 -1 -1 1 1
1 -1I 1 1 -1 1 -1 -1

-1 1 ! 1 1 1 -1 i-1 -1
1 1 1i i 1 i1 i1 i1



TABLE VII. - YATES' ORDER OF TREATMENTS

1 (1) 33 f 65 g 97 fg 129 h 161 fh 193 gh 225 fgh

2 a 34 af 66 ag 98 afg 130 ah 162 afh 194 agh 226 afgh

3 b 35 bf 67 bg 99 bfg 131 bh 163 bfh 195 bgh 227 bfgh

4 ab 36 abf 68 abg 100 abfg 132 abh 164 abfh 196 abgh 228 abfgh

5 c 37 cf 69 cg 101 cfg 133 ch 165 cfh 197 cgh 229 cfgh

6 ac 38 acf 70 acg 102 acfg 134 ach 166 acfh 198 acgh 230 acfgh

7 bc 39 bcf 71 beg 103 bcfg 135 bch 167 bcfh 199 bcgh 231 bcfgh

8 abc 40 abcf 72 abcg 104 abcfg 136 abch 168 abcfh 200 abcgh 232 abcfgh

9 d 41 df 73 dg 105 dfg 137 dh 169 dfh 201 dgh 233 dfgh

10 ad 42 adf 74 adg 106 adfg 138 adh 170 adfh 202 adgh 234 adfgh

11 bd 43 bdf 75 bdg 107 bdfg 139 bdh 171 bdfh 203 bdgh 235 bdfgh

12 abd 44 abdf 76 abdg 108 abdfg 140 abdh 172 abdfh 204 abdg 236 abdfgh

13 cd 45 cdf 77 cdg 109 cdfg 141 cdh 173 cdfh 205 cdgh *237 cdfgh

14 acd 46 acdf 78 acdg 110 acdfg 142 acdh 174 acdfh 206 acdgh 238 acdfgh

15 bcd 47 bcdf 79 bcdg 111 bcdfg 143 bcdh 175 bcdfh 207 bcdgh 239 bcdfgh

16 abcd 48 abcdf 80 abcdg 112 abcdfg 144 abcdh 176 abcdfh 208 abcdgh 240 abcdfgh

17 e 49 ef 81 eg 113 efg 145 eh 177 efh 209 egh 241 efgh

18 ae 50 aef 82 aeg 114 aefg 146 aeh 178 aefh 210 aegh 242 aefgh

19 be 51 bef 83 beg 115 befg 147 beh 179 befh 211 begh 243 befgh

20 abe 52 abef 84 abeg 116 abefg 148 abeh 180 abefh 212 abegh 244 abefgh

21 ce 53 cef 85 ceg 117 cefg 149 ceh 181 cefh 213 cegh 245 cefgh

22 ace 54 acef 86 aceg 118 acefg 150 aceh 182 acefh 214 acegh 246 acefgh

23 bee 55 beef 87 bceg 119 bcefg 151 bceh 183 bcefh 215 bcegh 247 bcefgh

24 abce 56 abcef 88 abceg 120 abcefg 152 abceh 184 abcefh 216 abcegh 248 abcefgh

25 de 57 def 89 deg 121 defg 153 deh 185 defh 217 degh 249 defgh

26 ade 58 adef 90 adeg 122 adefg 154 adeh 186 adefh 218 adegh 250 adefgh

27 bde 59 bdef 91 bdeg 123 bdefg 155 bdeh 187 bdefh 219 bdegh 251 bdefgh

28 abde 60 abdef 92 abdeg 124 abdefg 156 abdeh 188 abdefh 220 abdegh 252 abdefgh

29 cde 61 cdef 93 cdeg 125 cdefg 157 cdeh 189 cdefh 221 cdegh 253 cdefgh

30 acde 62 acdef 94 acdeg 126 acdefg 158 acdeh 190 acdefh 222 acdegh 254 acdefgh

31 bcde 63 bcdef 95 bcdeg 127 bcdefg 159 bcdeh 191 bcdefh 223 bcdegh 255 bcdefgh

32 abcde 64 abcdef 96 abcdeg 128 abcdefg 160 abcdeh 192 abcdefh 224 abcdegh 256 abcdefgh



TABLE VIII. - TREATMENTS OF EXPERIMENT PLANS AND ALIASED COMBINATIONS OF LOWER ORDER PARAMETERS.

g 4 5 6 7 8
h 0 1 2 3 4

1 (1) 60 1 (1) 4o 1 (1) 
8
o 1 (1) 

8
0  1 (1) 8o

2 a 61 2 a 81 34 af 81 98 afg 81 226 afgh 81

3 b 82 19 be 82 19 be 82 83 beg 82 211 begh 82
4 ab 812 20 abe 812 52 abef 812+856 52 abef 812+847+856 52 abef 812+ 847 +838+856

5 c 83 21 ce 83 53 cef 83 53 cef 83 181 cefh 83
6 ac 813 22 ace 813 22 ace 813+ 846 86 aceg 813+846+857 86 aceg 813+846+ 857+828
7 bc 823 7 bc 823+845 39 bcf 823+845 103 bcfg 823+845+ 867 103 bcfg 823+845+ 867+ 818
8 abc 8123 8 abc 8123+ 8145 8 abc 8123+ 8145+ 8356+ 8246 8 abc 8123+8145+8246+ 8347 136 abch 8123+88

+ 8356 + 8257 + 8167

9 d 84 25 de 84 57 def 84 121 defg 84 121 defg 84
10 ad 814 26 ade 814 26 ade 814+ 836 26 ade 814+ 836

+ 
827 154 adeh 814+ 836+ 827+ 858

11 bd 824 11 bd 824 + 835 43 bdf 824 + 835 43 bdf 824 + 835 + 817 171 bdfh 824 + 835+ 817+ 868
12 abd 8124 12 abd 8124+8135 12 abd 8124+ 8135+ 8236+ 8456 76 abdg 8124+ 87 76 abdg 8124+87

13 cd 834 13 cd 834 +825 13 ed 834+ 825 +816 77 cdg 834+ 825+ 816 205 cdgh 834+ 825+ 816+ 878
14 acd 8134 14 acd 8134 +8125 46 acdf 8134+86 46 acdf 8134+ 86 46 acdf 8134+ 86
15 bcd 8234 31 bcde 8234 +85 31 bcde 8234 + 85 31 bcde 8234 +85 31 bcde 8234+ 85
16 abcd 81234 32 abcde 81234+ 815 64 abcdef 81234 +815+ 826 128 abcdefg 81234 +815 +826 +837 256 abcdefgh 81234 +815+826 +837 +848

Numbers in columns are the Yates order number of the treatment in a full factorial experiment, as in table VIL



TABLE IX. - STARTING MODELS FOR SUBSET REGRESSION PROCEDURES

[The number i is the order number of the Yates estimate for a full factorial experiment.]

g=4, h=0

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

y a0 +8lX1 +B2x2 +a12x1x2 + 3x3 +813x1x3 +123x 2x3 +$123x1x2 3 +84x4  +814 x1x4 +B24x2x4 +8124xlx2X 4 +834x3x4 +8134x1 x3X4 +8234x2x3x4 +81 234x1 x2x3x4

g =5, h = 1

i

1 2 3 4 5 6 7 8 9 10 11 12 19 20 17 18

y = 0 +81xl + 2x2 +B121X2 +63x3 +813x1x3 +a23x2x3 +8123x1x2x3 +84x4  +814x1 4 +B24x2x4 +81 24x1 2 4 +825x2x5 +8125x1X2X5 +85x5 +15 5

g=6, h=2

i

1 2 3 4 5 6 7 8 9 10 11 12 34 33 17 18

y = 60 + 1x1 + 2x2 +612x1x2 +83x3 +813x1 3 +B23x2x3 +B1 23x1X 2X 3 +84x4  +B14 1X 4 +824x2x4 +81 24x1 x2x4 +B16Xlx 6 +86x6  +B5x 5  +B15Xlx 5

g =7, h = 3

i

1 2 3 4 5 6 7 8 9 10 11 65 34 33 17 18

y . 0 +l1xl +'2x2 +'12x1x2 + 3x3 +813x1 x3 +823x2x3 +8123x1x2 3 +B4x 4  +814x1x4 +824x2x4 +87x7  +816 1X 6 +86x6  +05x5  +a15zl
x5

g =8, h = 4

i

1 2 3 4 5 6 7 129 9 10 11 65 34 33 17 18

y = B +xX 1 + 2x2 +812x1x2 +83x3 + 13x3 23X2x3 88 + 4 + 4 +824x2x4 + 7x7 + 16x1x6 +86x6 +5x5 + 15 x5



TABLE X. - COMPUTER PROGRAMS

UName 2 a ne  Output

MODEL 0 0 1.0 1.0 YMU(I,L,M) I = 1,IP
BILM(I,L,M) I = 1,IT
BIAS(I,L,M) I = 1,IP

POOLES 0 Optional ERSQMX (L,M)
AVERSQ (L,M)

POOLES 1 Optional Optional ERSQMX (L,M)
AVERSQ (L,M)
VESQMX (L,M)
AVVESQ (L,M)



TABLE XI. - STRATEGIES OF p AND af

(66 COMBINATIONS)

1p af ap f ap f

1.0 1.0 0.25 0.25 0.005 0.005
.75 .10 .002
.50 .05 .001
.25 .025 .002 .002
.10 .01 .001
.05 .005 .001 .001
.025 .002
.01 .001
.005 .10 .10
.002 .05
.001 .025

.75 .75 .01
.50 .005
.25 .002
.10 .001
.05 .05 .05
.025 .025
.01 .01
.005 .005
.002 .002
.001 .001

.50 .50 .025 .025
.25 .01
.10 .005
.05 .002
.025 .001
.01 .01 .01
.005 .005
.002 .002
.001 .001



TABLE XII. - SUMMARY OF POPULATION CHARACTERISTICS AS

DETERMINED WITH PROGRAM MODEL

[Values of i are Yates order number of treatment

at which maximum absolute values of mean and

bias occurred.]

gh T

1 32

imma x  i Ibias Iax i i ma x  i Ibias Imax

4 0 0 3.260 16 0.0 - 104.3 16 0.0

1 3.262 16 0.0 - 104.4 16 0.0 -

2 3.263 16 0.0 - 104.4 16 0.0

4 4.040 3 0.0 - 129.3 3 0.0

8 8.040 3 0.0 - 257.3 3 0.0

16 16.04 3 0.0 - 513.3 3 0.0

5 1 0 3.540 32 0.0 - 113.3 32 0.0

1 3.541 32 .4840 3 113.3 32 15.49 3

2 3.541 32 .9680 3 113.3 32 30.98 3

4 3.800 3 1.936 3 121.6 3 61.95 3

8 7.800 3 3.872 3 249.6 3 123.9 3

16 15.80 3 7.744 3 505.6 3 247.8 3

6 2 0 4.030 64 0.0 - 129.0 64 0.0 -

1 4.030 64 .6733 3 129.0 64 21.55 3

2 4.030 64 1.347 3 129.0 64 43.09 3

4 4.030 64 2.693 3 129.0 64 86.19 3

8 7.410 3 5.387 3 237.1 3 172.4 3

16 15.41 3 10.77 3 493.1 3 344.7 3

7 3 0 4.390 128 0.0 - 140.5 128 0.0

1 4.390 128 .8328 3 140.5 128 26.65 3

2 4.390 128 1.666 3 140.5 128 53.30 3

4 4.390 128 3.331 3 140.5 128 106.6 3

8 7.110 3 6.662 3 227.5 3 213.2 3

16 15.11 3 13.32 3 483.5 3 426.4 3

8 4 0 4.740 256 0.0 - 151.7 256 0.0

1 4.740 256 .9191 3 151.7 256 29.41 3

2 4.740 256 1.838 3 151.7 256 58.82 3

4 4.740 256 3.676 3 151.7 256 117.6 3

8 6.780 3 7.352 3 217.0 3 235.3 3

16 14.78 3 14.70 3 473.0 3 470.6 3

6k = -1, I, -1, -1, . . . k= , ... g

i X xikk 2

yi£m P 1 + kxik + Tme k= (26)



TABLE XIII. - OPTIMAL STRATEGIES FOR GIVEN 8 AND

(a) T = 0.0; 6k = -1, 1, -1, -1, . . 1000

6 g 4 5 6 7 8

h 0 1 2 3 4

0.125 ap 1.00 1.00 1.00 1.00 1.00

af .001 .001 .001 .001 .001

emax .1444 .1656 .2086 .2450 .2843

V(&
2
)max .0302 .0357 .0467 .0560 .0660

.25 ap 1.00 1.00 .002 .25 .50

af .001 .001 .002 .001 .005

i2 .3855 .4700 .6411 .7564 .8794
max

V(T
2
)max .0918 .1133 .1577 .3418 .9264

.5 ap .75 .75 .75 1.00 al. 0 0

af .05 .05 .50 .25 1.00

x .9423 1.019 1.092 1.091 1.117

V(e )max 1.616 1.645 2.545 2.551 2.584

1.0 ap .75 .75 1.00 1.00 1.00

af .10 .10 .25 .25 .50

emax .9798 1.033 1.100 1.114 1.113

V()a 1.973 2.054 2.436 2.461 2.612

2.0 ap .75 .75 1.00 1.00 .75

af .10 .10 .25 .25 .75

Fax .9559 .9912 1.057 1.108 1.113

V(e2)max 1.859 2.128 2.450 2.482 2.536

4.0 ap .10 .75 .75 .50 1.00

af .10 .10 .10 .10 .25

2max .7964 .9573 .9769 1.056 1.069

V(e2)max 1.407 2.006 2.094 2.446 2.542

8.0 ap .025 .10 .10 .50 .25

af .025 .10 .10 .05 .25

e-2max .4786 .7731 .8800 .9458 1.016

V(F
2
)max .7771 1.458 1.655 2.060 2.444

16.0 ap .005 .01 .025 .05 .50

af .005 .01 .025 .05 .05

emax .3447 .4337 .5642 .7135 .9346

V(e2)max .2322 .4721 .7246 1.356 2.002

32.0 ap .005 .01 .001 .005 .025

af .005 .002 .001 .002 .025

2mx .3447 .4177 .5038 .5745 .6793

V(F
2
)max .2322 .3717 .4920 .6628 .9404

mp 0. In all other cases, mp = 1.



TABLE XIII. - Continued. OPTIMAL STRATEGIES FOR GIVEN 8 AND T

(b) T = 1.0, 6k = -1, 1, -1, -1, . ..; ne = 1000

-8 4 5 6 7 8

h 0 1 2 3 4

0.125 ap 1.00 1.00 1.00 1.00 1.00

af .001 .001 .001 .001 .001

-2

emax .1441 .1624 .2049 .2427 .2828

V(F2)max .0310 .0358 .0463 .0552 .0649

.25 .002 .002 .002 .25 .25

.002 .002 .001 .001 .005

-ax .3883 .4623 .6257 .7494 .8850

V(
2
)max .1184 .1139 .1566 .4531 .8731

.5 , .75 .50 .75 1.00 1.00

-
0  

.05 .05 .25 .25 .25

e2ax .9296 .9879 1.078 1.088 1.149

V(
2
)max 1.617 1.671 2.511 2.544 2.499

1.0 ap .75 .75 .75 .75 .75

.f 0 .10 .10 .10 .10

ma x  
1.003 1.076 1.218 1.314 1.547

V(e2)max 2.224 2.196 2.892 3.984 7.046

2.0 ap 1.00 .25 .25 .25 .50

f 25 .25 .10 .25 .05

--2max  1.068 1.501 2.188 2.810 3.106

V(e)max 2.268 3.832 17.83 22.51 19.91

4.0 ap .75 .10 .10 .25 .25

af .75 .05 .01 .01 .01

2x 1.112 4.118 6.206 8.287 9.033

(e 2) 2.267 23.59 189.6 160.0 379.3

8.0 ap al.0 0  .10 .025 .05 .10

af 1.00 .002 .002 .002 .005

2max 1.116 15.08 24.99 29.08 39.62

V(F2)max 2.282 198.1 491.4x10 232.2x10 342.4

16.0 a al.00 .025 .005 1.00 .025

af 1.00 .002 .001 .025 .001

emx 1.116 56.11 108.0 159.8 177.9

V(
2
)max. 2.282 257.9x10 160.4x10

3 
934.1x10 305.4x103

32.0 ap al.0 0  1.00 al.0 0  
1.00 .005

af 1.00 .75 1.00 .025 .001

2max 1.116 236.4 462.8 681.0 842.0

V(e
2
)max 2.282 974.1 196.4x10 439.2x102 258.8x10

4

am O0. In all other cases, mp = 1.



TABLE XIII. - Continued. OPTIMAL STRATEGIES FOR GIVEN 8 AND T

(c) T 
= 

2.0, 6k = -1, 1, -1, -1, .. ; n e = 1000

S4 5 6 7 8

0 1 2 3 4

0.125 op 1.00 1.00 1.00 1.00 1.00

af .001 .001 .001 .001 .001

-2max  .1473 .1629 .2012 .2403 .2814

V(i-
2
)max .0319 .0360 .0459 .0545 .0639

.25 ap .001 .005 .005 .25 .25

af .001 .005 .005 .001 .002

e2max .4037 .4643 .6146 .7412 .8586

V(,
2
)max .0984 .1571 .1646 .4785 .6676

.5 ap .75 1.00 1.00 .50 .50

af .05 .10 .10 .05 .10

emax .9009 .9760 1.150 1.257 1.412

V(-2)max 1.978 1.998 3.018 2.859 3.550

1.0 ap .75 .75 .75 .25 .75

af .10 .05 .05 .25 .05

emax 1.015 1.556 2.035 2.542 2.726

V(-
2
)max 2.026 3.788 6.866 12.25 17.94

2.0 ap 1.00 .10 .25 1.00 .25

af 1.00 .10 .025 .05 .025

-2max 1.114 3.618 6.315 7.691 8.787

V(e-)max 2.294 26.72 51.36 143.6 210.8

4.0 ap al.00 .05 .10 .10 .10

Of 1.00 .025 .005 .005 .01

-2ax  1.116 12.27 22.64 26.16 32.25

V(e
2
)max 2.282 52.58 808.4 135.5x10 371.1x10

8.0 ap al.0 0  .10 .025 .05 .05

af 1.00 .005 .002 .001 .002

2max  1.116 47.84 100.4 105.9 144.8

V(e2)max 2.282 801.8 369.5x102 292.9x10
2  

503.2x102

16.0 a al.00 .10 .025 .025 .025
p 1.00 .025 .001 .001 .001

max 1.116 192.9 391.2 488.5 714.0

V(T
2
)max 2.282 984.2x10 117.8x106 473.3

x
10

3  
587.3x103

32.0 ap al.00 .05 .005 1.00 .005

Of 1.00 .05 .001 .025 .002

emax  1.116 819.5 159.9x10 228.0x10 272.5x10

V(e2)max 2.282 112.4x10
3  

587.7x10
4  

101.8x10
4  

308.0x10
5

a mp 0. In all other cases mp= 1.



TABLE XIII. - Continued. OPTIMAL STRATEGIES FOR GIVEN 8 AND T

(d) T = 0.0; 
6
k 1= , 1, 1, 1, . . .; n e = 1000

4 5 6 7 8

0 1 2 3 4

0.125 ap 1.00 1.00 1.00 1.00 1.00

af .001 .001 .001 .001 .001

x .1444 .1656 .2086 .2450 .2843

V(e2)max .0302 .0357 .0467 .0560 .0660

.25 ap 1.00 1.00 .002 .25 .25

af .001 .001 .002 .001 .002

.3855 .4700 .6411 .7564 .8930
max

V(T
2

)max .0918 .1133 .1577 .3418 .6352

.5 Qp .75 .75 .75 1.00 al.00
af .05 .05 .50 .25 1.00

emax .9423 1.019 1.092 1.091 1.117

V(i
2

)max 1.616 1.645 2.545 2.551 2.584

1.0 Op .75 .75 1.00 1.00 1.00

af .10 .10 .25 .25 .50

ax .9798 1.033 1.100 1.114 1.113

V(E
2

)max 1.973 2.054 2.436 2.461 2.612

2.0 ap .75 .75 1.00 1.00 .75

af .10 .10 .25 .25 .75

e2ax .9559 .9912 1.057 1.108 1.113

V(e )max 1.859 2.128 2.450 2.482 2.536

4.0 ap .10 .75 .75 .50 1.00

af .10 .10 .10 .10 .25

emax  .7964 .9573 .9769 1.056 1.069

V(2)max 1.407 2.006 2.094 2.446 2.542

8.0 ap .025 .10 .10 .50 .25

af .025 .10 .10 .05 .25

emax .4786 .7731 .8800 .9458 1.016

V(e)mx .7771 1.458 1.655 2.060 2.444

16.0 ap .005 .01 .025 .05 .50

af .005 .01 .025 .05 .05

emax .3447 .4337 .5642 .7135 .9346

V(
2 

)max .2322 .4721 .7246 1.356 2.002

32.0 
0

p .005 .01 .001 .005 .025

af .005 .002 .001 .002 .025

max .3447 .4177 .5038 .5745 .6793

V(
2 
)max .2322 .3717 .4920 .6628 .9404

amp = 0. In all other cases mp = 1.



TABLE XIII. - Continued. OPTIMAL STRATEGIES FOR GIVEN 8 AND

(e) T = 1.0; 6k = 1, 1, i, i, . .; ne = 1000

4 65 7 8

0 2 3 4

0.125 ap 1.00 1.00 0.001 0.001 0.001

0f .001 .001 .001 .001 .001

emax .2195 .2515 .3106 .3580 .4078

V(4
2
)max .0460 .0538 .0684 .0802 .0925

.25 ap .75 .25 .50. .75 .75

af .001 .001 .025 .05 .05

e2x .6803 .7942 .9589 .9926 1.033

V(2)max .2085 .3667 1.541 1.648 1.760

.5 .75 1.00 1.00 1.00 1.00

Sf .10 .25 .25 .25 .25

2x 1.039 1.076 1.100 1.110 1.118

V(-2)max 1.944 2.273 2.450 2.413 2.466

1.0 ap 1.00 1.00 1.00 1.00 1.00

of .25 .25 .25 .25 .25

e-2x 1.060 1.124 1.189 1.192 1.247

V(e2)max 2.037 2.394 2.620 2.709 3.541

2.0 op 1.00 1.00 1.00 1.00 1.00

Of .25 .25 .25 .25 .25

e2 1.061 1.403 1.641 1.662 1.873

V(2)max 2.096 3.760 5.096 5.061 5.615

4.0 p 1.00 1.00 1.00 1.00 1.00

.f .50 .25 .25 .25 .25

2a 1.090 2.401 3.180 3.278 4.327

V(F2)max 2.332 8.209 11.79 12.82 19.62

8.0 p al.00 .75 .75 .75 .75

f 1.00 .50 .50 .50 .25

2 x  
1.116 6.286 8.975 9.780 11.11

v(e
2
)max 2.282 64.48 101.4 94.77 143.1

16.0 al.00 1.00 1.00 1.00 1.00

of 1.00 .75 .75 .75 .75

Eax 1.116 17.78 28.64 35.43 45.40

V(e2)max 2.282 150.5 369.1 478.5x10 451.9

32.0 p al.0 0  
1.00 1.00 1.00 1.00

af 1.00 1.00 1.00 1.00 .75

-m x  1.116 107.9 176.0 202.3 169.5

V(F2)mx 2.282 763.0 242.3x10 350.7x10 262.8x10

amp . In all other cases mp = 1i.



TABLE XIII. - Concluded. OPTIMAL STRATEGIES FOR GIVEN 6 AND T

(f) r = 2.0; 
6
k i1 , 1, 1, 1, . . .; ne = 1000

8 4 5 6 7 8

0 1 2 3 4

0.125 ap 0.002 0.001 1.00 1.00 1.00
af .001 .001 .001 .001 .001

2ma .3188 .3631 .4398 .4988 .5592
V( 2

)max .0705 .0814 .1002 .1148 .1298

.25 ap .50 1.00 .75 .75 1.00
af .025 .10 .10 .10 .25

2max .9223 .9629 1.018 1.030 1.089

V(F2)max 1.381 1.840 2.109 2.150 2.448

.5 ap 1.00 1.00 1.00 .75 1.00
af .25 .25 .25 .25 .25

eax 1.048 1.132 1.191 1.220 1.216

V(F
2
)max 2.080 2.382 2.594 2.823 2.958

1.0 ap 1.00 1.00 1.00 1.00 1.00
af .25 .25 .25 .25 .25

-2emax 1.059 1.414 1.669 1.716 1.842
V(

2
)max 2.215 3.851 5.150 5.152 5.435



TABLE XIV. - VALUES OF g AND 8 AT WHICH STATED VALUES

OF p AND af WERE OPTIMAL

(a) = 0.0, 6k = -1, 1, -1, -1, . . .; also 6k = 1, 1, 1, i, ... ; ne = 1000

(p af

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al.
0 0  8,0.5

1.00 d8,1.0 6,1.0 a4,0.125

6,2.0 4,0.25

7,0.5 5,0.125

7,1.0 5,0.25

7,2.0 6,0.125

8,4.0 7,0.125

8,0.125

.75 8,2.0 6,0.5 b4 ,1 .0 4,0.5
4,2.0 5,0.5

5,1.0
5,2.0

5,4.0
6,4.0

.50 7,4.0 7,8.0 8,0.25
8,16.0

.25 8,8.0 7,0.25

.10 4,4.0

5,8.0
6,8.0

.05 7,16.0

.025 4,8.0
6,16.0

8,32.0

.01 5,16.0 5,32.0

.005 4,16.0 7,32.0

c4,32.0

.002 6,0.25

.001 6,32.0

aSee table XV(a).

bSee table XV(b).

CSee table XV(c).

dSee table XV(d).



TABLE XIV. - Concluded. VALUES OF g AND 6 AT WHICH STATED

VALUES OF a AND af WERE OPTIMAL

(b) T = 1.0; 6k = 1, 1, 1, 1, . . ; n = 1000

p af

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al.00  4,8.0
4,16.0

84,32.0

1.00 5,32.0 5,16.0 4,4.0 f 4 , 1 .0 e4,0.125
6,32.0 6,16.0 8,16.0 4,2.0 5,0.125
7,32.0 7,16.0 5,0.5

8,32.0 5,1.0
5,2.0
5,4.0
6,0.5
6,1.0
6,2.0
6,4.0
7,0.5
7,1.0
7,2.0
7,4.0
8,0.5
8,1.0
8,2.0
8,4.0

.75 5,8.0 8,8.0 4,0.5 7,0.25 4,0.25
6,8.0 8,0.25
7,8.0

.50 6,0.25

.25 5,0.25

.001 6,0.125
7,0.125

h8,0.125

eSee table XV(e).

fSee table XV(f).

gSee table XV(g).
hSee table XV(h).



TABLE XV. - EFFECT OF ap AND af ON MEAN SQUARED ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(a) g = 4; h = 0; e = 0.125; T = 0.0; 6k = -1, 1, -1, -1, and 6k = i, 1, 1, 1; ne = 1000

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al.00 e-m2x 1.116

V(2)max 2.282

1.00 e2max  1.116 1.112 1.103 1.043 0.8372 0.6010 0.4108 0.2738 0.2190 0.1922 0.1444

V(F2)max 2.275 2.294 2.279 2.091 1.599 1.155 .6710 .4263 .2155 .1681 .0302

.75 .2x 1.091 1.085 1.050 0 919q .7818 .5751 .3835 .3059 .2525 .1902

V(e
2

)max 2.246 2.251 2.173 1.881 1.530 1.105 .6344 .4867 .2804 .1860

.50 e2 x  
1.020 .9840 .9194 .8250 .6943 .5157 .4000 .3195 .2487

V(7
2
)mx 2.238 2.162 1.932 1.653 1.323 .9057 .6548 .4335 .3008

.25 e-2mx .7182 .6618 .6216 .5810 .4693 .3887 .3360 .2646

V(-
2

)max 1.544 1.467 1.364 1.146 .9791 .7019 .5091 .3498

.10 emx .4100 .3867 .3750 .3429 .3169 .2794 .2284

V(j2)max .8122 .7263 .6804 .5710 .5168 .4220 .2612

.05 2max .2906 .2815 .2602 .2472 .2385 .2077

V(j2)max .4488 .4109 .3647 .3364 .2905 .2180

.025 e--2m .2230 .2135 .2069 .2037 .1772

V(
2

)max .2712 .2530 .2364 .2547 .1975

.01 emx .1855 .1827 .1823 .1629

V(F
2

)max .1613 .1413 .1448 .1267

.005 emax .1637 .1634 .1555

V(e
2

)max .1135 .1057 .1209

.002 emax .1561 .1504

V(e
2

)max .1038 .1143

.001 2emax  
.1465

V(2) max .0325

amp = 0. In all other cases mp = 1.



TABLE XV. - Continued. EFFECT OF p AND af ON MEAN SQUARED

ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(b) 6k = -1, i, -1, -1, . . ; 6k 
=  

, 1, 1, 1, . . .; g 4; h = 0; ne = 1000; 6 = 1.0; T = 0.0

ap U f

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al.00 max  1.116

V(e
2

)max 2.282

1.00 max 1.115 1.116 1.109 1.042 1.090 1.719 2.829 3.987 4.557 4.792 5.184

V(e2)max 2.282 2.305 2.290 2.138 2.345 4.149 5.757 5.068 3.617 2.812 1.306

.75 emax 1.101 1.088 1.044 .9798 1.181 1.804 2.846 3.512 4.018 4.555

V(e-)mx 2.244 2.263 2.214 1.973 2.574 4.404 5.831 5.659 4.860 3.597

.50 2 x  
1.034 1.053 1.100 1.150 1.410 2.129 2.684 3.224 3.815

V(-2)max 2.191 2.167 2.169 2.447 3.446 5.075 5.795 1.254 5.321

.25 e2 1.204 1.430 1.643 1.858 2.213 2.619 3.007 3.532

V(e2)x 2.470 3.247 3.868 4.375 5.138 5.704 1.212 5.648

.10 -2ax 2.194 2.585 2.896 3.228 3.524 3.768 4.168

V(-2)max 4.994 5.577 5.664 5.822 5.718 5.459 4.691

.05 em x  
3.072 3.402 3.766 3.993 4.219 4.523

V(-2)max 5.879 5.618 5.311 5.002 4.551 3.704

.025 U2 x  
3.834 4.203 4.425 4.617 4.813

V(-2)max 5.203 4.458 4.003 3.504 2.818

.01 e-2 4.448 4.670 4.839 4.968

V(i
2

)max 3.863 3.289 2.748 2.248

.005 -2x 4.769 4.929 5.025

V(F2) max 2.943 2.382 2.003

.002 e2max 4.968 5.065

V(2 )max 2.220 1.831

.001 -2 5.086

V(e2 )max 1.747

amp = . In all other cases, mp = 1.



TABLE XV. - Continued.. EFFECT OF ap AND f ON MEAN SQUARED ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(c) g 
= 

4; h = 0;- = 32.0; T = 0.0; 6k = -1, 1, -1, -1; and k 
= 

1 1, 1, 1; ne = 1000

a f

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0 0.01 0.005 0.002 0.001

al.0 0  m x  1.116

V(T
2
)max 2.282

1.00 2 1.115 1.114 1.099 1.024 0.8100 0.6388 0.6226 8.046 1.222x102 5.293x102 5.231x103

V(B
2
)max 2.277 2.297 2.284 2.127 1.463 1.126 6.907 1.478x103 1.967x105 1.468x106 1.397x10

3

.75 -2 1.096 1.080 1.031 89 4 .7814 .6200 1.413 2.238x10 1.232x102 3.594x103

V(
2
)max 2.250 2.247 2.233 1.893 1.510 1.040 4.169x10 1.430x104 2.252x10

5  
5.890x,06

.50 -x 1.025 1.001 .9076 .8203 .7104 .6322 3.494 1.907x10 2.265x103

V(-)max 2.200 2.200 1.921 1.606 1.201 5.160 5.497x102 1.367x104 6.723x10
6

.25 e2max  
.8417 .7824 .7362 .6677 .5928 .5934 1.140 1.125

x1 0 3

V(
2
)max 1.664 1.560 1.386 1.152 .8564 5.120 3.297x10 4.622x106

.10 =x .5849 .5632 .5361 .5130 .4608 .4174 4.346x102

V(
2 )max 1.068 .8626 .7692 .6844 .5691 .4403 2.085x106

.05 ax 
.4589 .4448 .4312 .4086 .3901 2.514

x1
02

V(
2
)ax .5630 .5233 .4554 .4123 .3769 1.252x106

.025 e2a x  
.4032 .3974 .3815 .3739 1.102x10

2

m025 e5

V(
2
)max 

.4001 .3854 .3591 .3335 5.630x105

-2 .3643 .3552 .3535 3.698x10

V
2
) max 

.2951 .2784 .2780 1.909x105

.005 2max 
34 .3450 1.078x10

V(e
2
)max .2322 .2329 5.484x104

.002 e2x .3458 1.078x10

V.00 2)max 
.2321 5.484x104

.001 e2max 
.3453

V (.2) max 
.2024

amp = 0. In all other cases mp = 1.



TABLE XV. - Continued. EFFECT OF a p AND af ON MEAN SQUARED

ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(d) 
6
k 

= 
-1, 1, -1, -1, -1, - -1, -1 -; 

6
k = 1, 1, 1, 1, , 1, 1, 1;

g = 8; h = 4; n e 
= 

1000; 6 = 1; T = 0

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al.00 e2,x 1.117

V(2)max 2.584

1.00 -2 1.120 1.121 1.162 2.303 4.911 8.114 11.14 12.49 13.16 14.07

V(e2)max 2.589 2.574 2.612 2.611 13.80 31.61 1.799 30.34 2.309 13.54 3.550

75 1.143 1.150 1.175 1.0 2.714 4.936 8.016 10.01 11.51 12.77

V(2)max 2.704 2.620 2.701 6.330 16.91 32.86 39.31 35.27 26.19 15.95

.50 e2ax 1.433 1.597 1.872 2.451 3.760 6.017 7.679 9.420 11.04

V()max 5.358 7.369 11.01 15.79 26.71 36.79 39.50 35.24 27.99

.25 ax 3.391 4.148 4.702 5.364 6.646 7.854 9.166 10.68

V(e2)max 22.55 28.45 32.23 35.60 38.93 39.72 36.22 29.84

.20 8.071 8.801 9.345 9.867 10.30 10.91 11.89

V(-
2 

)max 39.50 39.41 38.78 37.36 35.46 31.02 23.96

• 2 10.79 11.40 11.85 11.98 12.26 12.82

V(-
2

)max 
31.07 28.03 25.66 24.68 22.11 16.90

.025 x 12.42 12.75 12.85 13.01 13.33

.025 2) max 20.63 18.08 17.05 15.46 12.03

.01 13.47 13.53 13.64 13.74
.01 )max 10.47 9.832 8.793 7.712

005 13.71 13.81 13.86

V.005 ax 7.720 6.841 6.289

.002 e-2 13.94 13.98

V.002 2max 5.236 4.790

14.04

.001 -emax 
3.867

V(a 0. In all other cases

mp=0. In all other cases mpl.



TABLE XV. - Continued. EFFECT OF ap AND af ON MEAN SQUARED

ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(e) g = 4, h = 0, 6 = 0.125; T = 1.0; 6k = 1, 1, 1, 1; n e = 1000

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

a1 .00  -2 ma 1.116

V( 
2

)max 2.282

1.00 max 1.115 1.112 1.101 1.045 0.8551 0.6207 0.4286 0.3335 0.2520 0.2466 0.2195

V(e)max 2.291 2.311 2.289 2.120 1.653 1.168 .8042 .4406 .2171 .1405 .0460

.75 1.089 1.084 1.056 Li'9501 .7833 .5991 .4371 .3267 .2927 .2520

V(T2)max 2.275 2.275 2.201 1.807 1.406 1.125 .6759 .4127 .2603 .1137

.50 e-2 1.029 .9936 .9239 .8327 .6968 .5251 .3920 .3454 .2889

V(E-
2
)max 2.214 2.142 1.842 1.690 1.358 .9613 .7247 .3803 .2412

.25 2max  .7585 .6967 .6554 .6003 .4966 .3983 .3615 .3060

V(e
2

)max 1.608 1.542 1.408 1.180 .9287 .8147 .4493 .3128

.10 x2 .4246 .4067 .3899 .3635 .3312 .3153 .2808

V(e
2
)max .8632 .8405 .7459 .6425 .5259 .3318 .2668

.05 2-2 .3276 .3168 .3056 .2947 .2881 .2595

V(T2) max .5294 .5183 .4802 .3888 .2646 .2040

.025 -2 .2847 .2726 .2685 .2616 .2441
max

V(E-
2
)max .2851 .2593 .2488 .2127 .1353

.01 em x  
.2378 .2364 .2352 .2302

V(E2)max .1474 .1423 .1385 .1073

.005 ax .2353 .2357 .2302

V(-
2

)max .1404 .1369 .1061

.002 max .2229 .2196

V(-2)max .0541 .0460

.001 e2max

V (-2) max .0460

amp 0. In all other cases mp= i.



TABLE XV. - Continued. EFFECT OF ap AND of ON MEAN SQUARED ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(f) 6k = 1, 1, 1, 1; g = 4; e 1.0; r = 1.0; h = 0; ne = 1000

a p f

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al.0 0  2max 1.116

V(
2 ) max 2.282

1.00 emx 1.117 1.112 1.095 1.060 1.401 2.862 4.901 7.376 8.676 9.214 9.952

V(E
2

)max 2.307 2.327 2.202 2.037 4.132 1.269x10 1.923x10 1.726x10 1.137x10 8.197 2.482

.75 ax 1.098 1.089 1.064 1.38 1.724 3.092 5.116 6.532 7.436 8.507

V(E
2 )max 2.342 2.245 2.031 2.508 6.358 1.434x10 2.007x10 1.946x10 1.707x10 1.202x10

.50 e2 x  
1.148 1.193 1.235 1.455 2.148 3.579 4.839 5.938 7.171

V(-
2 )max 2.553 2.750 3.054 4.492 " 9.166 1.629x10 -1.948x10 1.963x10 1.683x10

.25 2ax 1.786 2.246 2.644 3.022 3.759 4.602 5.436 6.648

V(e
2
)max 5.767 8.533 1.114x10 1.303x10 1.646×0 1.874x10 1.949x0 1.860x10

-20 3.725 4.368 4.949 5.691 6.209 6.867 7.771

V(-
2 )max 1.515x10 1.723x10 1.823x10 1.943x10 1.925x10 1.843x10 1.553x10

-2 5.477 6.132 6.969 7.409 7.871 8.490

V (2) max 1.835x10 1.795x10 1.725x10 1.624x10 14.94x10 1.222x10

.025 emax 6.984 7.796 8.171 8.554 8.968

V(
2

) max 
1.696x10 1.463x10 1.304x10 1.139x10 9.240

.01 e2mx 
8.454 8.832 9.167 9.378

V (-
2 )max 

1.200x10 9.984 7.970 6.669

.005 ax 9.048 9.345 9.534

V(0
2
) max 8.820 6.875 5.564

.002 e2x 9.541 9.686

V(E
2

) max 5.597 4.530

.001 emax 
9.752

V (y2) max 
4.114

amp = 0. In all other cases mp= 1.



TABLE XV. - Continued. EFFECT OF ap AND af ON MEAN SQUARED ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(g) g = 4; h = 0; 6 = 32.0; T = 1.0; 6k = 1, 1, i, 1; ne = 1000

ap 
af

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al.00 e2max

V(e
2

)max 2.282

1.00 ma 1.894 9.625 41.81 214.9 462.3 115.6x10 505.6x10 985.5x10 100.8x10
2  

101.0x10
2 

101.1x10
2

V(T
2

)max 5.341 178.3 121.8xl0 910.6x10 302.4x102 408.0x103 100.9x105 173.8x104 253.3x103 736.3x102 284.4x10

75 2a 89.73 134.1 197.1 84.0 _ 384.4 804.5 253.lx10 279.2x10 293.1x10 307.6x10

V(
2
)max 101.9x10

2 
135.2x102 100.8x102 595.3x10 490.3x10 135.2x104 158.9x105 173.3x105 170.4x105 167.4x105

.50 -2 251.0 272.3 290.1 303.2 334.8 728.4 998.2 104.7x10 108.0x10

V(
2 
)max 978.7x10 597.910 201.7x10 242.9x10 387.3

x 1
02 181.6x104 377.5x104 392.2x104 406.9x104

.25 e2max 298.1 298.4 299.3 309.2 528.8 642.1 667.9 679.8

V2e2)max 104.6x10 905.9 632.5 340.3x10 261.4x102 108.0xi03 294.8x103 448.3x103

.10 2ax 
300.2 300.2 309.4 527.7 628.1 636.5 642.4

V(
2 ) max 458.3 441.7 336.3xl0 249.5x10

2 
346.2x10 124.6x102 885.5x102

.05 -2x 
300.4 309.4 527.7 627.1 633.0 633.0

V(-0 max 
370.0 336.3X10 249.5x102 258.4x10 644.4 644.4

.025 eax 
309.4 527.7 627.1 636.0 662.0

V(2 2 )emax 
336.3x10 249.5x102 258.4x10 377.0x10 298.0x10

2

527.7 627.1 746.6 132.4x10

.01 max 
249.5x102 258.4x10 105.8x10

3 
237.8xi03

627.1 793.7 161.8x10

.005 max 
258.4x10 142.7x103 495.6x102

V 2)max
215.6x10 299.4x10

.002 max  
121.4x105 974.7x104

V 2) max
982.3x10

.001 e max 
262.3x10

4

amp 0. In all other cases mp = 1.



TABLE XV. - Continued. EFFECT OF a p AND af ON MEAN SQUARED ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(g) g = 4; h = 0; 6 = 32.0; T = 1.0; 6k = 1, , 1, 1; ne = 1000

ap f_,_,

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al. 0 E2lmax

V(e
2

)max 2.282

1.00 2ma 1.894 9.625 41.81 214.9 462.3 115.6X10 505.6x10 985.5x10 100.8x102 101.0x10
2 

101.1x10
2

V(8
2
)max 5.341 178.3 121.8x10 910.6x10 302.4x10

2 
408.0x103 100.9x105 173.8x104 253.3x103 736.3x102 284.4x10

.75 Z2 89.73 134.1 197.1 L8 384.4 804.5 253.1x10 279.2x10 293.1x10 307.6x10

max 897 3. 9.

V(
2
)max 101.9x10

2 
135.2x10

2 
100.8x102 595.3x10 490.3x10 135.2x10

4  
158.9x05 173.3x105 170.4x105 167.4x105

.50 -2 251.0 272.3 290.1 303.2 334.8 728.4 998.2 104.7x10 108.0x10

V(-
2
)max 978.7x10 597.9x10 201.7x10 242.9x10 387.3x102 181.6x10

4 
377.5x104 392.2x104 406.9x104

.25 x 298.1 298.4 299.3 309.2 528.8 642.1 667.9 679.8

V(2 )max 104.6x10 905.9 632.5 340.3x10 261.4x102 108.0x10
3 

294.8x103 448.3x103

.10 e.2x 300.2 -300.2 309.4 527.7 628.1 636.5 642.4

V(-
2 )max 458.3 441.7 336.3x10 249.5x102 346.2x10 124.6x102 885.5x102

.05 e2ax 
300.4 309.4 527.7 627.1 633.0 633.0

V(~ ) max 370.0 336.3X10 249.5x102 258.4x10 644.4 644.4

.025 e2mx 309.4 527.7 627.1 636.0 662.0

V (2) max 
336.3x10 249.5x102 258.4x10 377.0x10 298.0x102

.01 T2 527.7 627.1 746.6 132.4x10

.V(2)max 249.5x102 258.4x10 105.8x103 237.8x103

627.1 793.7 161.8x10

.005 emax 258.4x10 142.7x103 495.6
x1
02

215.6x10 299.4x10

.002 max 121.4x105 974.7x10
4

VR2)max
982.3x10

.001 emax 262.3x4

amp = 0. In all other cases mp = 1.



TABLE XV. - Concluded. EFFECT OF ap AND af ON MEAN SQUARED

ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

(h) g = 8; h = 4; 6 = 0.125; r = 1.0; 
6
k = , 1, 1, 1, . . .; ne = 1000

p -f

1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001

al.00 max 1.121

V(e-2)max 2.569

1.00 em x  1.122 1.122 1.113 1.068 0.9152 0.7405 0.5716 0.4900 0.4452 0.4223 0.4081

v(2)max 2.559 2.568 2.551 2.401 2.003 1.579 .9782 .7405 .4034 .3373 .0924

-2 r-1- 1.105 1.084
.75 emx 1.108 1.105 1.084 .9826 .8524 .6830 .5581 .4771 .4476 .4295

V(-2)max 2.556 2.517 2.463 2.160 1.752 1.262 .8933 .5934 .4207 .1618

.50 -2 1.042 1.028 .9848 .8971 .7506 .6397 .5226 .4836 .4533

) a 2.443 2.338 2.161 1.971 1.508 1.208 .8133 .5711 .3190

.25 emax  .8118 .7891 .7508 .6932 .6272 .5488 .5007 .4707

V(-2)max 1.991 1.886 1.796 1.433 1.211 .9575 .7156 .4482

.10 -2emax .5684 .5603 .5262 .5105 .4826 .4598 .4491

V(&2) max 1.150 1.082 1.031 1.058 .8848 .6804 .4114

.05 -max .4745 .4583 .4517 .4425 .4278 .4273

V(T2)max .7093 .6980 .6862 .5831 .5700 .2981

--2max .4422 .4420 .4428 .4327 .4265
.025 e

V(e
2
)max .4933 .4947 .4475 .4851 .2503

.01 e2mx .4227 .4242 .4207 .4185

V (-E2) ax .3530 .3454 .3384 .1419

.005 -2a .4160 .4158 .4137

V(e-
2
)max 

.1957 .1965 .1302

.002 -Ex  
.4091 .4079

V(T2 ma.1787 .0925

.001 -2x 4078

V(2)max  
.0925

a p= 0. In all other cases mp = 1.
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Figure 1. - Principal components regression.
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START

SECTION 1. - DECLARATIONS, CONSTANTS, POPULATION, MEANS AND
STRATEGY. READ: g; QL; 1= 1, ... , Ig: g - h: "m; m = 1, ... , n:

'Pk; k 1, .... g: Pk; k= 1, ... g ne

COMPUTE: Ai, EQUA. (22); Ci, EQUA. (23); Pit.m, EQUA. (27)

NO
DOES k = g? YES

YESESNO 
D

DOESi 2 =

YES

50. - READ mp, , af

SECTION 2. - SIMULATIONS AND MODEL FITTING. GENERATE eo1i

NO DOES i = it?

YES

COMPUTE Yoilmn,EQUA. (28)

NO
DOES I = it

YES

FIT EQUA. (9) BY YATES' METHOD.

SECTION 3. - CONSTRUCTION AND ORDERING OF MEAN SQUARES

(a) SECTIONS 1, 2, AND 3.

Figure 3. - Flow chart for POOLES.



SECTION 4. - DELETION OF TERMS. COMPUTE THE TEST
STATSTICW& EUA. (13). SET ALL INSIGNIFICANT CO-

EFFICIENTS - 0

SECTION 5. - PREDICTIONS. COMPUTE Ypil mn BY

REVERSED YATES' METHOD.

SEC ON 6. - ACCUMULATION OF ERRORS. COMPUTE

Sne epit m, EQUA. (30)

NO
DOES i t ip?

YES

NO

NO DOES 1=10
GO TO EQUA. (28) YES

-NODOES m I mT?
GO TO EQUA. (28) YES

NO!
a DOES n = ne?
GO TO SECTION 2)

YES

SECTION?. - DETERMINATION OF MXIMUM AND MEAN
SQUARED ERROR§: DETERMINE "p1m, max, EQUAT. (31)
AND COMPUTE -m, EQUAT. (32).

SECION 8. - OUTPUT. WRITE it; n ; g; &; ap; af;
Tm, m I1, ..... m.; E, =  ..... ; pmmax
AND ep/m, m = 1, ... , m. - 1, ... , t'

NO IS LIST OF

(GO TO STATEMENT NUMBER 50) YES

STOP

(b) SECTIONS 4, 5, 6, 7, AND 8

Figure 3. - Concluded.



ABSTRACT

The investigation consisted of Monte Carlo studies using population
models intended to represent response surface applications. Simulated

experiments were generated by adding pseudo random normally distributed
errors to population values to generate "observations." Model equations
were fitted to the "observations" and the decision procedure was used to
delete terms. Comparison of values predicted by the reduced models with
the true population values enabled the identification of deletion strate-
gies that are approximately optimal for minimizing prediction errors.
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